Расчет систем вентиляции

Зачем нужен расчет оптимальной мощности для системы вентиляции?

Расчет системы проводится перед подбором вентиляторов и другого оборудования. Расчеты направлены на определение основных параметров будущей системы вентиляции:

  • расход воздуха вентиляторами;
  • рабочее давление для вентиляционных установок в помещении;
  • мощность нагревающего элемента — калорифера вентиляционных систем;
  • площадь сечения воздуховодов в будущей системе.

Для расчета будущей вентиляции необходимо знать следующие параметры объекта:

  • площадь помещения и высота потолка;
  • назначение объекта – в зависимости от того, проводим ли мы расчет в жилом доме или производственном здании, будет меняться количество и мощность вентиляционного оборудования – от бытового вентилятора до сложных промышленных систем;
  • количество человек, живущих или работающих на той пощади, куда установят систему.

Как посчитать вентиляцию с помощью СНиП?

Правила СНиП указывают необходимую кратность воздухообмена для систем — кратность воздухообмена устанавливается в соответствии с типом объекта. Перед тем, как рассчитать вентиляцию, необходимо установить точную цифру для систем объекта – от 1 в случае бытовых систем, до 3, если производится расчет необходимой производственной мощности промышленных совмещенных общеобменных и локальных систем.

Также используется для расчета вентиляции калькулятор. На нашем сайте представлен калькулятор, помогающий посчитать параметры общеобменных систем онлайн.

Расчет потребного воздухообмена при общеобменной вентиляции.

Если перед специалистами, выполняющими расчет мощности будущей системы, стоит не просто вопрос «Как рассчитать вентиляцию?», но и задача рассчитать потребный (необходимый) воздухообмен, то следует вооружиться следующими замерами:

  • длина, ширина и высота потолков в помещении – при проектировании вентиляции расчет основывается на объеме вентилируемого объекта;
  • мощность оборудования системы, для которой определяется потребный (необходимый) воздухообмен;
  • категория сложности работы – методика расчета и конечный результат зависимы от условий, в которых система вентиляции эксплуатируется;
  • тип вредного вещества и количество его выделения;
  • предельная допустимая концентрация (ПДК) вредного вещества, удалением которого занимаются системы воздухообмена;
  • количество человек, работающих на площади, для которой требуется рассчитать будущую вентиляцию.

Допустим, расчет потребного воздухообмена начинается со следующих данных:

Длина

20м

Ширина

10м

Высота

Мощность оборудования систем вентиляции

50 кВт

Категория тяжести работы

Легкая

Тип вредного вещества

Металлическая пыль

Количество вредного вещества

5000мг/ч

ПДК

6мг/м3

Число сотрудников

50

Первоначально подсчет потребного (необходимого) воздухообмена требует найти расход приточного воздуха, необходимый для отвода избыточной теплоты. Формула:

L1 = Qизб / ((tуд — tпр) * c * p), где:

  • c – теплоемкость воздуха (мы возьмем с = 1,2 кДж / (кг * оС)),
  • p – плотность воздуха, кг/м3;
  • tуд – температура воздуха, удаляемого из объекта;
  • tпр – расчетная температура воздуха из притока (при этом расчетная температура наружного воздуха, tпр, больше температуры в рабочей зоне, tуд, на 5 оС).

Плотность воздуха зависит от расчетной температуры наружного воздуха и определяется по формуле:

p = 353 / (273 + tпр).

Допустим, для нашей системы значение расчетной температуры наружного воздуха tпр = 22,3 оС, тогда tуд = 27,3 оС. Тогда плотность воздуха p = 353 / (273 + 22,3) = 1,2 кг/м3.

Второй этап подсчета необходимого воздуха для общеобменной вентиляции – это определение избыточного количества теплоты Qизб.

Расчет воздухообмена в это части происходит по формуле:

Qизб = ∑ Qпр = Qэо + Qр, где:

  • Qр – теплота, поступающая от различных источников, кДж/ч;
  • Qэо – теплота, выделяемая при работе электродвигателей.

Количество теплоты от электрооборудования, необходимое для определения мощности вентиляции, определяется по формуле:

Qэо = 352 * B * N, где:

  • B – коэффициент загрузки оборудования (расчет будущей системы отталкивается от коэффициента загрузки 0,25-0,35, в нашем случае примем его равным 0,35);
  • N – общая мощность электрооборудования (в нашем случае мощность оборудования равна 50).

То есть, Qэо = 352 * 0,35 * 50 = 6160кДж/ч.

Определение для общеобменной вентиляции теплоты от других источников, Qр, происходит по следующей формуле:

Qр = N * Kр, где:

  • N – число работников на объекте, для которого производится расчет мощности вентиляции (в нашем случае определение мощности вентиляции происходит для 50 сотрудников);
  • Кр – теплота, выделяемая одним человеком, кДж. Так как тип работы определен как легкий, то для расчета будущей системы возьмем Кр = 300кДж.

Тогда количество тепла из других источников, необходимое для расчета оптимальной по мощностям и энергопотреблению системы, равно Qр = 50 * 300 = 15000кДж/ч.

Соответственно, избыточное количество теплоты, требуемое для расчета мощностей проектируемой вентиляционной системы равно Qизб = Qэо + Qр = 6160 + 15000 = 21160кДж/ч.

Расход приточного воздуха для проектируемой вентиляции, необходимый для отвода избыточной теплоты, можно посчитать по формуле:

L1 = Qизб / ((tуд — tпр) * c * p),

то есть, для нашего случая расход приточного наружного воздуха составляет:

L = 21160 / (1,2 * 1,2 * 5) = 2939 м3/ч.

Расчет системы вентиляции и потребного (необходимого) воздухообмена для удаления вредных веществ.

Теперь необходимо рассчитать мощность системы, необходимую для удаления вредных веществ.

Расчет вентиляционной системы для вредных веществ производится по формуле:

L2 = G / (qуд — qпр), где:

  • G – количество выделяемых вредных веществ, удаляемых системой вентиляции (в нашем случае, это – металлическая пыль с мощностью выброса 5000мг/ч);
  • qуд – концентрация вредных веществ в удаляемом системой вентиляции воздухе;
  • qпр – концентрация вредных веществ в приточном воздухе системы.

Концентрация вредных веществ в удаляемом системой воздухе, qуд, не должно превышать ПДК. То есть при расчете для нашей системы, qуд = 6мг/м3. Концентрация вредных веществ в приточном воздухе не должна превышать 0,3 от ПДК. То есть, при расчете проектируемой общеобменной системы вентиляции qпр = 0,3 * 6 = 1,8 мг/м3.

Такая расчетная методика для проектирования вентиляции дает нам необходимую мощность будущих систем, равную:

L2 = 5000 / (6 – 1,8) = 1190 м3/ч.

Потребный (необходимый) воздухообмен рассчитывается по формуле:

k = L / V,где:

  • L – расход приточного воздуха для удаления вредных веществ системой общеоменной вентиляции;
  • V – объем объекта.

k = 1190 / (20 * 10 * 5) = 1,19.

Расчет воздухообмена в заданных нами условиях показал, что:

  • расход приточного воздуха (наружного) в час составляет около 1200 м3, что должно учитываться оборудованием общеобменных систем
  • необходимая кратность воздухообмена равна 1,19.

Показатели расчетной температуры наружного воздуха.

Показатели расчетной температуры наружного воздуха содержатся в действующей редакции СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование».

Значение расчетной температуры наружного воздуха устанавливается для разных городов России и используется для проектирования отопления, вентиляции. Расчетная температура наружного воздуха для системы отопления – это средняя температура холодной пятидневки, использующаяся для расчета отопления. Это средняя температура наиболее холодных пятидневок за 8 самых холодных зим за последние 50 лет.

Такой расчет отопительных систем позволяет спроектировать вентиляционные установки (если систему затачивают под задачи отопления) так, чтобы они были готовы к сильным морозам, которые случаются раз в несколько лет. Еще такой расчет систем позволяет посчитать вентиляцию, спроектировать и установить ее без лишних затрат.

Температура наружного воздуха – один из климатических факторов среды, знание которых необходимо для оптимального подбора материалов для строительных конструкций. Расчетная наружная температура необходима для правильного подбора материалов и построения вентиляции помещения, которые смогут защищать здание от низкой температуры, дождя, ветра, снега. Чтобы рассчитать будущую вентиляцию и сделать дом теплым, необходимо учитывать расчетную температуру внешнего воздуха.

Расчет вентиляционной системы и выбор материалов для наружных ограждений требуют знания расчетной температуры наружного воздуха:

  • для легких наружных ограждений нужна абсолютно минимальная температура наружного воздуха;
  • для ограждений малой массивности – среднюю наружную температуру наиболее холодных суток;
  • для ограждений средней массивности – среднюю из средних расчетных температур для проектирования (такая температура для наружных заграждений берется из наиболее холодных суток и наиболее холодной пятидневки);
  • для массивных ограждений берется средняя температура для проектирования вентиляции из наиболее холодной пятидневки;
  • для перекрытий над подвалами и подпольями принимают среднюю температуру, зафиксированную для наружного воздуха в наиболее холодную пятидневку. Для подвальных перекрытий наружное состояние воздуха берется независимо от массивности ограждения.

Различия между температурами и другими показателями воздуха наружного нахождения необходимо учитывать для того, чтобы рассчитать и правильно выбрать теплозащиту ограждений. Потери тепла через заграждения здания в течение для происходят неравномерно, ночью, когда расчетный наружный воздух имеет меньшую температуру, стены и другие ограждения быстрее охлаждаются по толщине.

Для охлаждающих ограждений большой инерционности (например, из бревенчатого сруба) показателя расчетной температуры наружного воздуха берутся за период в 5 дней – такой срок достаточен для того, чтобы воздух внутри охладился максимально. Так проектировщики будут знать, как рассчитать вентиляцию и отопление с учетом наименьшей возможной температуры.

Для того, чтобы рассчитать вентиляцию, нужно взять показатели расчетной температуры наружного воздуха из СНиП 2.01.01-82 «строительная климатология и геофизика». Здесь приведены расчетные температуры наружного воздуха для некоторых городов России.

Город, для которого установлено значение расчетной температуры наружного воздуха

Среднее значение расчетной температуры наружного воздуха, оС

Среднее значение зимней расчетной температуры наружного воздуха для проектирования отопления

Среднее значение зимней расчетной температуры наружного воздуха для расчета вентиляции

Среднее значение расчетной температуры наружного воздуха для отопительного периода

Владивосток

-25

-16

-4,8

Волгоград

-22

-13

-3.4

Екатеринбург

-31

-20

-6,4

Красноярск

— 40

-22

-7,2

Москва

-25

-14

-3,2

Новосибирск

-39

-24

-9,1

Омск

-37

-23

-7,7

Ростов

-22

-8

-0,6

Санкт-Петербург

-25

-11

-2,2

Хабаровск

-32

-23

-10,1

Как видно из данных СНиП, для Санкт-Петербурга показатель расчетной температуры наружного воздуха, используемый для отопительной системы, расчет который проводится, равен -25оС. Показатель расчетной температуры наружного воздуха, используемый для того, чтобы рассчитать вентиляцию, равен -11оС.

Для Москвы показатель расчетной температуры наружного воздуха для систем отопления также равен -25оС, а показатель расчетной температуры наружного воздуха для воздухообмена равен -11оС. С показателями расчетной температуры наружного воздуха в других городах можно ознакомиться в приложении к действующей редакции СНиП.

Нормы кратности воздухообмена для помещений

Утепленная и герметичная конструкция домов приводит к снижению кратности воздухозамещения. В результате вредные микроорганизмы размножаются интенсивнее, и портится общая гигиена.

В нормах и правилах отобразили критические значения по воздухообмену, несоблюдение которых однозначно приведет к проблемам.

Воздухообмен на примере подвала: чтобы добиться необходимой кратности, нужно несколько приточных отверстий и дефлектор на отводящей трубе для усиления оттока

Для многоквартирных домов, различных помещений и зданий вывели нормы кратности воздухообмена — в СП 54.13330.2016.

К отдельным комнатам есть следующие требования:

  • кухня с газоиспользующим оборудованием — 80—100 м³/ч;
  • кухня с электроплитой и без газовых приборов — 60 м³/ч;
  • ванная/душевая/туалет — 25 м³/ч;
  • совмещенный санузел — 50 м³/ч;
  • общая постирочная, сушильная, гладильная — 7;
  • холл или коридор в многоквартирном доме — 3;
  • жилая комната в квартире (детская, спальня) — 3 м³/ч на 1 м²; 30 м³/ч на человека, но не меньше 0,35 раз в час от объема помещения;
  • лестничная клетка — 3;
  • гардероб в общежитии — 1,5;
  • машинное помещение лифта — 1;
  • комната с теплогенератором с теплопроизводительностью до 50 кВт — 1 м³/ч для закрытой камеры сгорания и 100 м³/ч для открытой;
  • кладовая для хозяйственных предметов, спортивного оборудования — 0,5.

Если установить газовую плиту в помещение с теплогенератором, то потребуются дополнительные 100 м³/ч воздухообмена.

Для помещений разного назначения кратность подбирают по СП 60.13330.2016, СП 118.13330.2012 и СП 44.13330.2011.

Для измерения кратности воздухообмена в комнатах и технических помещениях с нестандартной планировкой или размерами — используйте СанПиНы и корректируйте результат исходя из самостоятельных расчетов.
Вентиляция над источниками тепла
В ресторанах над каждым источником тепла стоит разместить и приточную, и вытяжную вентиляцию, и если эти воздуховоды находятся вверху, то температурный контраст между внутренним и поступающим воздухом не должен превышать 6 °C

Современные здания оборудуют автономными воздушными клапанами, которые устраняют застоявшиеся массы воздуха. Владельцы квартир могут их регулировать.

Тип помещения Кратность Тип помещения Кратность Тип помещения Кратность Тип помещения Кратность
Оранжерея 25 — 50 Прачечная 10 — 15 Офис 6 — 8 Больничная палата 4 — 6
Красильный цех 25 — 40 Парикмахерская 10 — 15 Гараж 6 — 8 Жилая комната 3 — 6
Металлообрабатывающий цех 20 — 40 Домашняя кухня 10 — 15 Спортзал 6 — 8 Площадка в подъезде, вестибюль 3 — 5
Пекарня 20 — 30 Кафетерий 10 — 12 Мастерская 6 — 8 Спальня 1,5 — 4
Кухня общепита 15 — 20 Конференц-зал 8 — 12 Домашний туалет 3 — 10 Школьный класс 2 — 3
Раздевалка с душем 15 — 20 Подвальное помещение 8 — 12 Чердак 3 — 10 Кладовка 0,2 — 3
Подсобка 15 — 20 Магазин 8 — 10 Комната переговоров 4 — 8 Электрощитовая 1 — 2
Туалет в общественном месте 10 — 15 Ресторан/бар 6 — 10 Ванная/душевая 3 — 8

Дополнительные вентилирующие приборы решают вопросы с предельно допустимыми концентрациями вредных веществ. В жилых зданиях и общественных учреждениях приемлемыми показателями считают 0,1 мг/м³ для озона и 0,005 мг/м³ для хлорсодержащих соединений.

Жильцы будут в еще большей безопасности, если сделают мощную механическую вентиляцию.

Цеха и промышленные помещения

В производственных помещениях условия бывают более тяжелыми, а иногда и вредными. Кратность воздухообмена в цехах должна в несколько раз превосходить параметры для других помещений.
Воздуховоды на промышленном объекте
Для производственных помещений нужен высокомощный воздухообмен с большой кратностью, а рассчитывают его по излишкам влаги, излишкам тепла, взрывоопасным и вредным веществам, выделениям от персонала

Факторы в подборе правильного показателя вентилирования цеха:

  1. Процент влажности, избыток влаги в воздухе. В первую очередь это касается предприятий, которые в технологических процессах используют жидкости.
  2. Тепловая энергия, вырабатываемая оборудованием. Избыточное тепло от промышленных машин нужно устранять через естественную и механическую вентиляцию.
  3. Уровень загрязнения и особенности технологических процессов. Для каждого химического соединения есть предельно допустимая концентрация. Воздухообмен рассчитывают на то, чтобы основные вредные вещества присутствовали в воздухе в минимальном количестве.
  4. Интенсивность труда. Тяжелая физическая нагрузка и напряженная умственная работа станут более легкими и выполнимыми при высоком содержании свежего воздуха. В случае с физическим трудом речь идет также о безопасности.
  5. Количество работающих в помещении в один момент и на протяжении дня. Каждого сотрудника следует обеспечить воздухом с расчета на среднестатистическую потребность на 1 человека.

Значение имеет также форма цеха и его объем. Первый параметр влияет на движение воздушных масс, второй — на потребность в воздухе.

Придется учесть застаивание воздуха и его завихрение.
Воздухообмен в цехах
Цеха бывают малярными, сварочными, механосборочными и механическими: из этих помещений нужно удалять конвективное и лучистое тепло, дым, соединения с инертными газами и разные примеси

Для промышленных объектов с опасными и летучими хим. соединениями требуется 45-кратный обмен. Красильным цехам — 40. В помещениях, где работники в значительной мере применяют физическую силу, воздух нужно обновлять 35 раз в час.

На производственных площадках, где рабочий процесс не включает сложную работу и частое применение физических усилий, — 30. В цехах, где работа заключается в легкой физической нагрузке, — 25.

Кратность воздухообмена для промышленных помещений указали в СП 118.13330.2012, а также в СП 60.13330.2012 и СП 60.13330.2016 — актуализированных редакциях СНиП 41-01-2003.

Медицинские организации и больницы

В организациях здравоохранения от качества воздуха зависит жизнь пациентов и скорость их восстановления. В детских больницах на это следует обращать еще больше внимания. Кратность сменяемости воздуха для медицинских учреждений регламентирует СП 158.13330.2014.

Больше всего в замене воздуха нуждаются палаты для инфекционных больных. Требуемая кратность воздухообмена для них составляет 160 м³/ч на 1 человека. Палатам для других пациентов (детей и взрослых) нужна интенсивность воздухообмена на уровне 80 м³/ч на 1 человека.

Показатели в м³/ч на 1 человека дают больше гарантии, что такой кратности воздухообмена хватит для поддержания и улучшения здоровья лечащихся.

На врачебные кабинеты и лаборантские хватит 60 м³/ч на 1 человека. Столько же нового воздуха требуется в помещениях для игло- и мануальной терапии, залах для лечебной физкультуры, а также в кабинетах с постоянными рабочими местами.
Воздухообмен в больницах
Если кратность воздухозамещения в больнице правильная, то будет обеспечен идеальный химический и микробиологический состав воздуха при минимальном уровне шума и вибраций

Во многих случаях можно обойтись без высокоинтенсивного воздухообмена, а также без удельных нормативов. В кабинетах для томографии и процедурных для приема радиофармацевтических препаратов хватает 6-кратной смены воздуха.

Пять раз в час нужно обновлять воздух в грязных зонах ДСО/ЦСО, помещениях для санитарной обработки больных, комнатах для хранения дезинфицирующих средств, сортировки использованного белья, обработки и мытья посуды.

В кабинетах, где хранятся препараты и стерильные материалы, нужна 4-кратная сменяемость воздуха. В таком же количестве нового воздуха нуждаются процедурные и помещения, оборудованные под флюорографические и рентгенодиагностические обследования.

Трехкратное обновление воздуха считают нормой для небольших мастерских по обслуживанию медицинского оборудования, лаборантских комнат клинических анализов, чистых зон стерилизационного отделения.

Такие же нормы распространяются на помещения для сортировки анализов, холлы, кабинеты функциональной и ультразвуковой диагностики.
Вентиляционные отверстия в реанимации
В отделе реанимации и интенсивной терапии воздухообмен проектируют так, чтобы препятствовать распространению продуктов горения, и в этом также помогают противопожарные клапаны

Для буфетов и зон принятия пищи при стационарах требуется 2-кратный воздухообмен. Всего 1 обновления воздуха в час достаточно для небольших кабинетов, где нет ни одного постоянного рабочего места.

Столько же хватит для маленьких складов с аппаратурой и чистыми материалами, вестибюлей на первом этаже, архивов, справочных, гардеробных и кладовых.

Офисы и деловые центры

В офисах и административных учреждениях требуется больше свежего воздуха, чем в индивидуальном жилье. Причина этому — большое количество офисной техники, напряженная умственная деятельность и стандарты обслуживания клиентов.

Критерии для вентиляции в офисах:

  • большой размер вентканалов;
  • наличие механической и естественной вентиляции;
  • эффективная аэрация при невысоком расходе электроэнергии;
  • гибкое управление системой вентиляции: возможность регулировки и настройки под внешние погодные условия;
  • удобное размещение элементов механической и естественной вентиляции для проведения ремонтных и монтажных работ разного характера;
  • применение бесшумного оборудования или звукоизоляции;
  • качественная вытяжная и приточная вентиляция;
  • постоянное поступление свежего воздуха, в идеале с улицы.

Новый воздух должен эффективно удалять испарения. Стоит уделить внимание увлажнению и очистке воздуха, его охлаждению или прогреву перед подачей в помещения.
В больших офисных залах делают развитую систему общеобменной и местной вентиляции с клапанами, воздухораспределителями, калориферами, теплоизоляцией и автоматическим управлением

В рабочей комнате на 1 сотрудника нужно не меньше 20 м³/ч. В конференц-залах столько же отводят на каждого посетителя. Интенсивный воздухообмен следует обеспечивать в умывальных и санитарных комнатах — до 15 обновлений воздуха в час.

Помещениям для курения понадобится 10-кратный обмен. В кабинете управляющего/управляющих нужна кратность воздухообмена на уровне 3, в технических помещениях — 1, в комнатах с картотеками и кладовых — 0,5. Нормы для офисов есть в СП 118.13330.2012 и международном стандарте ASHRAE 62-1-2004.

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

Как узнать силу тяги в шахте

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

Как выяснить потери на трение в воздуховоде

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1.2 х 1² / 2 = 0.6 Па.Формула динамического напора воздуха в канале
  2.  Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).Таблица потерь давления воздушного потока
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка, отвод кверху 90° и зонт на конце трубы. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2, 0.4 и 1.3 соответственно. Сумма ξ = 1.2 + 0.4 + 1.3 = 2.9.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 2.9 х 0.6 Па = 2.05 Па.

Сравним расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па больше, чем потери давления (сопротивление) Δp = 2.05 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Теперь укоротим вентканал до 3 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 3 (1.27 — 1.2) = 2.06 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 3 м + 2.9 х 0.6 Па = 1.97 Па.

Напор природной тяги 2.06 Па превышает сопротивление системы Δp = 1.97 Па, значит, шахта трехметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Важное замечание. Разница между силой тяги и сопротивлением воздуховода составила всего 2.06 — 1.97 = 0.09 Па. Чтобы вытяжка устойчиво работала в любую погоду, высоту трубы в нашем примере лучше принять с запасом – 3.5 м.

Монтаж металлических воздуховодов на крыше

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 3.5 м.

Проверка работы вентиляционной системы

При неправильно проведенном расчете вентиляции помещения, а также засорении вентканалов или при сбоях в оборудовании возможно снижение эффективности или полная остановка системы.

Поэтому на действующих объектах периодически должна проводиться проверка работы вентиляционной системы. Для этой цели применяются инструментальные замеры скорости движения воздуха в воздуховоде при помощи специальных приборов — анемометров. Прибор подносится к вентиляционной решетке и измеряет скорость перемещения воздушных масс. Также могут применяться более сложные анемометры с выносными датчиками, подключаемыми к общему вычислительному модулю. Это дает возможность провести замеры одновременно в нескольких точках. Показания анемометров пересчитываются по специальным таблицам вентиляции помещений в значения расхода воздуха и кратности воздухообмена, которые сравниваются с нормативными параметрами для конкретного помещения.

В соответствии с действующими требованиями инструментальная проверка должна проводиться со следующей периодичностью:

  • на объектах с естественной вентиляцией или общеобменной системой механического побуждения — не реже одного раза в 36 месяцев;
  • на объектах с приточно-вытяжной системой — не реже одного раза в год;
  • в помещениях, где возможно выделение взрывчатых, горючих веществ, токсинов I-II классов — ежемесячно.

В быту могут применяться простые способы проверки. Например, к вентрешетке можно поднести зажженную зажигалку, свечу или спичку. По отклонению пламени определяется, происходит ли движение воздуха по каналу, что позволяет оценить работоспособность системы. Однако это не самый лучший метод с точки зрения пожарной безопасности. Поэтому в качестве альтернативы пламени можно воспользоваться листом бумаги.

Физкультурно оздоровительные учреждения

При занятиях в спортивном зале кратность обмена воздуха играет важную роль, поскольку во время физических нагрузок необходимо обеспечить поступление свежего кислорода в легкие каждого из посетителей с учетом достаточно больших объемов зала. Таким образом, требования оговаривают необходимость обеспечения поступления в спортзал при наличии посетителей 80 м3/ч воздуха.

Расчет кратности воздухообмена для бассейна исходит из количества находящихся в нем людей и должен составлять 20 м³/ч в расчете на 1 человека. В то же время, учитывая специфику нахождения в сауне, в бане, необходимо обеспечить смену 10 м³ воздуха в течение каждого часа. При этом учитывая большие объемы вырабатываемого насыщенного пара, можно вести расчет воздухообмена по влаговыделениям.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расход воздуха по кратности обмена

Расшифровка обознаений:

  • L – искомый объем приточного и вытяжного воздуха, м³/ч;
  • S – квадратура помещения, где рассчитывается вентиляция, м²;
  • h – высота потолков, м;
  • n – число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75 х 3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Как снять фильтрующий элемент встроенной вытяжки

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Приток необходимого количества воздуха в жилых помещениях в зависимости от типа комнаты может обеспечиваться через автономные воздушные клапана в стенах с регулируемыми параметрами открывания, форточки, двери, фрамуги и окна. Специалисты обращают внимание проектировщиков на то, что при расчете показателей полной замены воздуха в жилых комнатах, необходимо учитывать ряд параметров, среди которых:

  • назначение помещения;
  • количество постоянно находящихся в сооружении людей;
  • температура и влажность воздуха в помещении;
  • количество работающих электрических приборов и норма выделяемого ими тепла;
  • тип естественной вентиляции и обеспечиваемые им показатели кратности замены кислорода в течение 1 ч.

Для создания комфортных условий согласно нормам СП 54.13330.2016 величина воздухообмена должна составлять:

  1. При площади помещения, приходящегося на 1 человека в размере менее 20 м² для детских комнаты в квартире, спален, гостиных и общих помещений подача воздуха должна составлять 3 м³/ч на 1 м² площади каждой из комнат.
  2. При общей площади в расчете на одного человека превышающей 20 м², интенсивность воздухообмена должна составлять 30 м³/ч на 1 человека.
  3. Для кухни, оснащенной электрической плитой минимальные показатели подачи кислорода не могут быть меньше 60 м³/ч.
  4. Если на кухне используется газовая плита, минимальное значение нормы воздухообмена увеличивается до 80-100 м³/ч.
  5. Нормативные показатели кратности воздухообмена для вестибюлей, лестничных клеток и коридоров составляет 3 м³/ч.
  6. Параметры воздухообмена несколько возрастают при увеличении влажности и температуры в помещении и составляют для сушильных, гладильных и постирочных комнат 7 м³/ч.
  7. При организации в жилом помещении ванной и уборной, расположенных отдельно друг от друга, норма воздухообмена должна быть не меньше 25 м³/ч, при совмещенном расположении санузла и ванной комнаты, этот показатель увеличивается до 50 единиц.

Учитывая то, что при готовке помимо пара образуется ряд летучих соединений с содержанием масла и гари, при организации системы воздухообмена на кухне необходимо исключить попадание этих веществ в пространство жилых комнат. Для этого воздух кухонного помещения за счет создания тяги в вентиляционном канале, высотой не менее 5 м и использования специального вытяжного зонта удаляется наружу. Такой тип организации ротации воздушных масс обеспечивает устранение и избыточного количества тепла. Однако во избежание попадания отработанного воздуха в квартиры, расположенные на верхних этажах при строительстве сооружения выполняется воздушный затвор, обеспечивающий изменение направления воздушного потока.

Инструкция: вычисления по зданиям промышленного назначения

Расчет воздуховодов - подбор прямоугольных сечений
Расчет воздуховодов — подбор прямоугольных сечений.

В составе этого вида зданий находится множество комнат и кабинетов. Те из них, в которых вентиляция должна обеспечить комфортный труд людей низкой категории тяжести работ (администрация, бухгалтерия и так далее), рассчитываются по алгоритму, приведенному выше. В остальных помещениях, в которых проходят технологические и вспомогательные процессы, необходимо рассчитывать приточно-вытяжную вентиляцию в соответствии со СНиП 41-01 по видам выделяющихся в них вредных или горючих веществ, излишкам тепла.

Прежде чем приступить к расчету общеобменной вентиляции, нужно выяснить, сколько воздуха из пространства комнаты уходит из-за работы местных отсосов. К ним относятся вытяжные зонты и лабораторные шкафы, различные всасывающие панели и укрытия. Применяются они с целью отобрать вредные вещества прямо от источника их выделения, не допуская распространения по всему объему помещения. Зачастую местные отсосы идут в комплекте с технологическим оборудованием, поэтому их производительность заранее известна. Другие требуется рассчитать и установить в зависимости от размеров и интенсивности источника выброса, порядок этих расчетов приведен в технической литературе. Для укрупненного определения производительности местного отсоса можно применить знакомую формулу: Lотс=3600ϑ*Sотс, где:

  • ϑ — скорость воздушного потока в рабочем проеме вытяжного зонта или шкафа (принимается 1 м/с);
  • Lотс — расход воздуха через этот рабочий проем (м3/ч);
  • Sотс — площадь проема (м2).

Полученная величина будет участвовать в дальнейшем просчете необходимого количества приточного воздуха. Но сначала нужно выяснить, сколько необходимо подать воздуха с улицы для различных условий. Суть операции в том, чтобы определить виды и количество выделяющихся в пространство помещения вредных для здоровья человека или горючих и взрывоопасных веществ. Вычисления производить на основании этих данных. Если источников выделений несколько, то считать придется по каждому из них, а для вентиляции принять наибольший результат.

Таблица концентраций вредных веществ
Таблица предельно допустимых концентраций вредных веществ.

Зная, сколько выделяется каждого вещества в помещение за промежуток времени (мг/ч), не трудно определить его концентрацию (мг/м3). Условно считается, что вещество распределяется на весь объем комнаты. После этого находят значение предельно допустимой концентрации (ПДК) этого вещества в соответствующей нормативной документации. Если концентрация в помещении превышает ПДК, нужно подать определенное количество свежего воздуха, а загрязненный — удалить. Величину притока считают по формуле: L=Mвв/yпом-yп, где:

  • L — необходимое количество свежего притока (м3/ч);
  • Mвв — значение массы выделяющегося вредного вещества за 1 час (мг/ч);
  • yпом — расчетная величина удельной концентрации вещества в объеме комнаты (мг/м3);
  • yп — его удельная концентрация в поступающих с улицы воздушных массах (мг/м3).

От полученного значения L нужно отнять величину Lотс, полученную ранее. Результатом будет расход воздушных масс, которые необходимо удалить из помещения с помощью общеобменной вытяжной вентиляции.

Полезные советы

Сделать полный инженерный расчёт вентиляционной системы дома довольно сложно. Индивидуальный застройщик может обойтись приведенным упрощённым вариантом. Описанная выше методика позволит оборудовать работоспособную вентиляцию жилья.

Несколько рекомендаций по упрощению задачи:

  1. В дебри аэродинамики не влезайте – правильно посчитайте объёмы жилых помещений, размеры воздуховодов, определите их размещение, а вентиляционные трубы выведете на высоту 2 м над вытяжными отверстиями.
  2. Внутри здания, для направленного движения удаляемых воздушных потоков, применяйте пластиковые трубы. У них почти идеальная гладкая поверхность, таким образом уменьшите сопротивление передвижения газов.
  3. Воздуховоды, проложенные в неотапливаемых местах, необходимо утеплить, иначе будет образовываться конденсат, а зимой лёд.
  4. В точках выходов вентиляционных шахт не устанавливайте вентиляторы, их лопасти, в отключенном состоянии, уменьшат скорость прохождения потока. Принудительные механизмы крепят со стороны комнат.
  5. Дополнительный приток свежего воздуха обеспечат, установленные в определённых местах наружных стен, регулируемые клапаны. Заделайте все щели и трещины, чтобы холодный воздух самопроизвольно не просачивался внутрь.

Требования к вентсистемам жилых помещений

В соответствии с действующими нормативами система вентиляции должна поддерживать следующие значения воздухообмена для разных помещений на квадратный метр площади:

  • жилые комнаты: 3 м3/ч;
  • кухня: при использовании газовой плиты — 90 м3/ч, при использовании электроплиты — 60 м3/ч;
  • совмещенный санузел: 50 м3/ч;
  • отдельная ванна и туалет: 25 м3/ч.

Кроме этого, действуют требования по температуре воздуха в жилых помещениях. Они регламентированы с учетом температуры на улице в самый холодный пятидневный период в течение года. Если она не опускается ниже -31 °C, то температура в жилых комнатах должна поддерживаться на уровне не ниже +18 °C. Если в самую холодную пятидневку стоят морозы ниже -31 °C, то минимальная температура в жилых комнатах должна составляет +20 °C. Для регионов, где температура на улице в самую холодную пятидневку года опускается ниже -40 °C, приточная вентиляция должна оборудоваться устройствами подогрева воздуха.

Для поддержания оптимальных значений температуры воздуха требуется эффективная интегрированная работа систем отопления, кондиционирования и вентиляции.

Понравилась статья? Поделиться с друзьями:
Adblock
detector