- Устройство
- Как работает турбонаддув
- О отрицательных особенностях турбонаддува
- Ресурс турбины дизельного двигателя
- Применение и дополнительные функции
- Принцип работы турбонаддува
- Поломки турбины и их диагностика
- Блок управления двигателем
- Что такое турбо-яма?
- Принцип работы и конструкция дизельного турбонагнетателя
- Работа турбокомпрессора автомобиля (турбонагнетателя двигателя)
- Общие положения
- Привод
- Эксплуатация дизельного двигателя с турбиной
- Как настроить и отрегулировать турбину
- Как почистить турбину своими руками
- Механизм изменения геометрии
- Устройство системы турбонаддува
- Достоинства и недостатки
Устройство
Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.
Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.
Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.
Его устройство выглядит следующим образом:
Устройство турбонагнетателя: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.
Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.
Как работает турбонаддув
Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.
Принцип работы турбонаддува
Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.
Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.
О отрицательных особенностях турбонаддува
Конструкция системы турбонаддува обуславливает некоторые отрицательные особенности, возникающие при её работе.
Одна из них – эффект «турбоямы» (turbolag): при резком нажатии на педаль акселератора увеличение мощности двигателя происходит с задержкой. Причина этого в инерционности системы: нужно определённое время для увеличения давления в наддуве, если на газ нажали резко. Избежать этой ситуацию становится возможным, либо применяя турбину с изменяемой геометрией, либо используя два турбокомпрессора, работающих параллельно или последовательно (bi-turbo или twin-turbo), либо задействовав комбинированный наддув.
Второй неприятный момент – это «турбоподхват»: вслед за преодолением «турбоямы» происходит резкое увеличение давления в наддуве.
Турбина с изменяемой геометрией или VNT турбина, способна оптимизировать движение потока отработавших газов, меняя размер входного канала. Наиболее распространены такие турбины в серийных системах турбонаддува дизельных двигателей известных автопроизводителей (например, TDI у Volkswagen).
Турбонаддув с двумя параллельно работающими турбокомпрессорами находит большее применение для мощных V-образных двигателей. При этом на каждый ряд цилиндров двигателя работает свой турбокомпрессор. Выигрыш получается за счёт распределения инерции с одной большой турбины на две маленькие.
В случае установки двух турбин в последовательном режиме выигрыш производительности достигается путём работы разных турбокомпрессоров для разных значений оборотов двигателя. Изредка встречаются случаи установки трёх турбокомпрессоров последовательно (triple-turbo, например, у BMW), ещё реже – четырёх (quad-turbo у Bugatti).
При комбинированном наддуве (twincharger) совместно используется турбонаддув и механический наддув. Сжатие воздуха при низких оборотах коленчатого вала происходит с помощью механического нагнетателя. С увеличением оборотов в работу включается турбокомпрессор, а при достижении их определённой частоты работа механического нагнетателя прекращается (например, TSI у Volkswagen).
Применение турбонаддува особенно эффективно для дизельных двигателей мощных грузовиков: расход топлива увеличивается ненамного, зато мощность двигателя и крутящий момент заметно повышаются.
Турбокомпрессоры, наиболее мощные в пропорции к мощности двигателя, применяются для дизелей тепловозов. По абсолютному же значению, самые мощные турбокомпрессоры устанавливаются в судовые двигатели (до десятков тысяч киловатт).
Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. Моторы с турбонаддувом в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.
Рекомендуем также прочитать статью об устройстве топливного фильтра дизельного двигателя. Из этой статьи вы узнаете о том, как происходит очистка солярки в моторах данного типа.
Главной задачей устройства является нагнетание воздуха в цилиндры дизельного ДВС под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.
Ресурс турбины дизельного двигателя
Включение турбины дизельного двигателя происходит с самыми первыми его оборотами. Заканчивается же уже немного позже его первичной остановки. При непосредственном пуске мотора выхлопные газы сразу же попадают в турбинную улитку, а это, в свою очередь, приводит вал с крыльчатками в движение.
На самих холостых оборотах у выхлопных газов наблюдается маленькое давление, вследствие чего вращение турбины и ее скорость не влияет на весь объем воздух, который попадает непосредственно в двигатель.
Увеличение количества выхлопных газов сопутствуется ростом оборотов. Вследствие этого процесса обороты турбокомпрессора увеличиваются, а турбина начинает свою эксплуатацию в штатном режиме. В автомобильном «мифовом» мире существует теория, что ресурс турбины у дизельного двигателя очень невысок.
Миф этот нужно развеять, так как он не соответствует действительности. Сам ресурс турбины дизельного двигателя сравняется по долговечности ресурса мотора. Он немного меньше чем он, так как это вызвано его деятельностью и спецификой работы.
Зачастую ресурс турбокомпрессора, вследствие плохого эксплуатирования и несоблюдения всех правил и рекомендаций производителей, снижается. Сопутствуют этому следующие моменты:
1. Использование некачественной смазки.
2. Несвоевременная замена масла.
3. Резкий набор оборотов при холодном и непрогретом двигателе.
4. Остановка горячего двигателя, если он не выдерживается на холостом ходу.
5. Засор каналов масла. В результате этого перебои подачи смазки неизбежны.
Срок службы турбины никоим образов не является зависимым от уровня умения владения автомобилем водителя. Это миф. На практике же, эксплуатация турбины дизельного двигателя не имеет сложностей даже для новичков.
Для того, чтобы двигатель работал бесперебойно нужно соблюдать все те же правила, которые используются при использовании обычного мотора. Нужно лишь учитывать минимальные вышеуказанные нюансы.
Применение и дополнительные функции
Сфера применения турбин с изменяемой геометрией определяется их типом. Так, на двигатели легковых и легких коммерческих автомобилей устанавливают варианты с вращающимися лопастями, а модификации со скользящими кольцом применяют в основном на грузовиках.
В целом чаще всего турбины с изменяемой геометрией используют на дизельных двигателях. Это объясняется невысокой температурой их выхлопных газов.
На легковых дизелях такие турбонагнетатели служат, прежде всего, для компенсации потери производительности от системы рециркуляции отработанных газов.
На грузовиках сами турбины могут улучшать экологичность путем контроля количества выхлопных газов, рециркулируемых к впускному отверстию двигателя. Так, с использованием турбокомпрессоров с изменяемой геометрией можно повысить давление в выпускном коллекторе до величины, большей, чем во впускном, с целью ускорения рециркуляции. Несмотря на то что избыточное противодавление отрицательно сказывается на эффективности использования топлива, оно способствует сокращению выбросов оксида азота.
К тому же механизм можно модифицировать с целью сокращения эффективности турбины в заданном положении. Это используется для повышения температуры выхлопных газов с целью продувки сажевого фильтра путем окисления застрявших углеродных частиц в результате нагрева.
Данные функции требуют наличия гидравлического или электрического привода.
Отмеченные преимущества турбин с изменяемой геометрией перед обычными определяют их как оптимальный вариант для спортивных моторов. Однако на бензиновых двигателях они встречаются крайне редко. Известно всего несколько оснащенных ими спорткаров (в настоящее время — Porsche 718, 911 Turbo и Suzuki Swift Sport). По словам одного из менеджеров BorgWarner, это объясняется очень высокой стоимостью производства таких турбин, обусловленной необходимостью применения специализированных термостойких материалов для взаимодействия с высокотемпературными выхлопными газами бензиновых моторов (выхлопные газы дизелей имеют гораздо меньшую температуру, поэтому турбины для них дешевле).
Первые VGT, используемые на бензиновых двигателях, были сделаны из обычных материалов, поэтому для обеспечения приемлемого срока эксплуатации приходилось использовать сложные системы охлаждения. Так, на Honda Legend 1988 г. такую турбину совместили с интеркуллером водяного охлаждения. К тому же для двигателей данного типа более обширен диапазон пропускной способности выхлопных газов, следовательно, требуется возможность обработки большего диапазона массового расхода.
Производители достигают требуемых показателей производительности, отзывчивости, эффективности и экологичности наиболее дешевыми методами. Исключение составляют единичные случаи, когда конечная стоимость не приоритетна. В данном контексте это, например, достижение рекордных показателей на Koenigsegg One: 1 или адаптация Porsche 911 Turbo к гражданской эксплуатации.
В целом подавляющее большинство турбированных автомобилей оснащают турбокомпрессорами обычной конструкции. Для высокопроизводительных спортивных двигателей нередко используют твинскрольные варианты. Хотя такие турбокомпрессоры уступают VGT, они обладают теми же преимуществами перед обычными турбинами, только в меньшей степени, и при этом имеют почти такую же простую конструкцию, как и последние. Что касается тюнинга, здесь использование турбокомпрессоров с изменяемой геометрией, помимо высокой стоимости, ограничено сложностью их настройки.
Для бензиновых двигателей в исследовании H. Ishihara, K. Adachi и S. Kono в качестве наиболее оптимальной среди VGT была отмечена турбина с переменным расходом (VFT). Благодаря только одному движущемуся элементу сокращены затраты на производство и повышена температурная устойчивость. К тому же такая турбина действует по простому алгоритму БУД, аналогичному вариантам с фиксированной геометрией, оснащенным перепускным клапаном. Особенно хорошие результаты были получены при совмещении такой турбины с iVTEC. Однако для систем принудительной индукции наблюдается повышение температуры выхлопных газов на 50-100 °C, что сказывается на экологических показателях. Данную проблему решили использованием алюминиевого коллектора с водяным охлаждением.
Решением BorgWarner для бензиновых двигателей стало совмещение твинскрольной технологии и конструкции с изменяемой геометрией в твинскрольной турбине с изменяемой геометрией, представленной на SEMA 2015 г. Ее конструкция аналогична твинскрольной турбине: данный турбокомпрессор имеет двойную входную часть и сдвоенное монолитное турбинное колесо и совмещен с твинскрольным коллектором, учитывающим последовательность работы цилиндров для устранения пульсации выхлопных газов с целью создания более плотного потока.
Отличие состоит в наличии во входной части заслонки, которая в зависимости от нагрузки распределяет поток по крыльчаткам. На низких оборотах все отработанные газу идут на маленькую часть ротора, а большая перекрыта, что обеспечивает еще более быструю раскрутку, чем у обычной твинскрольной турбины. С ростом нагрузки заслонка постепенно переходит в среднее положение и равномерно распределяет поток на высоких оборотах, как в стандартной твинскрольной конструкции. То есть по устройству механизма изменения геометрии такая турбина близка к VFT.
Таким образом, данная технология, как и технология с изменяемой геометрией, обеспечивает изменение соотношения A/R в зависимости от нагрузки, подстраивая турбину под режим работы двигателя, что расширяет рабочий диапазон. При этом рассматриваемая конструкция значительно проще и дешевле, так как здесь используется только один движущийся элемент, работающий по простому алгоритму, и не требуется применение термостойких материалов. Последнее обусловлено снижением температуры за счет потери тепла на стенках двойного корпуса турбины. Следует отметить, что подобные решения встречались и ранее (например, quick spool valve), однако эта технология по каким-то причинам не обрела распространения.
Принцип работы турбонаддува
Схема работы турбонаддува двигателя
Принцип работы системы турбонаддува заключается в следующем:
- Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
- Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
- Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
- В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.
В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.
Поломки турбины и их диагностика
Но эта конструкция не лишена недостатков. К популярным «болезням» турбокомпрессоров добавляется образование нагара, мешающего нормальной работе лопаток. Затрудненное или неполное смыкание/разведение лопаток имеет два негативных последствия:
- чрезмерный продув — Когда лопасти не сбрасываются на высоких скоростях, в системе подачи воздуха создается избыточное давление. В результате такой неисправности обедняется топливная смесь, и даже ослабевают выпускные клапана. Двигатель глохнет и отказывается работать на высоких оборотах;
- недодув — это обратная сторона предыдущей проблемы, при которой явно проявляется турбо лаг.
Блок управления двигателем
Из вышесказанного следует, что принцип работы турбин с изменяемой геометрией основан на оптимальной координации дополнительного механизма в соответствии с режимом работы двигателя. Следовательно, требуется точное его позиционирование и постоянный контроль. Поэтому турбины с изменяемой геометрией контролируются блоками управления двигателем.
Они используют стратегии, направленные либо на максимальную производительность, либо на улучшение экологических показателей. Существует несколько принципов функционирования БУД.
Наиболее распространенный из них предполагает использование справочной информации, основанной на эмпирических данных и моделях двигателя. В данном случае контроллер прямой связи выбирает значения из таблицы и использует обратную связь для сокращения ошибок. Это универсальная технология, позволяющая применять различные стратегии управления.
Основной ее недостаток состоит в ограничениях при переходных процессах (резких ускорениях, переключениях передач). Для его устранения использовали многопараметрические, PD- и PID-контроллеры. Последние считают наиболее перспективными, однако они недостаточно точны во всем диапазоне нагрузок. Это решили путем применения нечеткой логики алгоритмов принятия решений с использованием MAS.
Существует две технологии предоставления справочной информации: модель двигателя средних значений и искусственные нейронные сети. Последняя включает две стратегии. Одна из них предполагает поддержание наддува на заданном уровне, другая — поддержание отрицательной разницы давления. Во втором случае достигаются лучшие экологические показатели, но наблюдается превышение скорости турбины.
Не многие производители занимаются разработкой БУД для турбокомпрессоров с изменяемой геометрией. Подавляющая их часть представлена продукцией автопроизводителей. Однако на рынке существуют некоторые сторонние высококлассные ЭБУ, рассчитанные на такие турбины.
Что такое турбо-яма?
Стоит добавить, что крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.
Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители, так или иначе, смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.
Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.
Принцип работы и конструкция дизельного турбонагнетателя
Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:
- корпус компрессора (1);
- компрессорное колесо (2);
- вал ротора или ось (3);
- корпус турбины (4),
- турбинное колесо(5);
- корпус подшипников;
Работа турбокомпрессора автомобиля (турбонагнетателя двигателя)
Схема турбонагнетателя
Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора. Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.
Поступая в улитку, отработавшие газы перемещаются по каналу, а затем попадают на лопасти турбинного колеса. Затем оно набирает скорость в пределах 250 000 оборотов в минуту. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению. Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.
Составляющие турбины изготавливаются из жароустойчивых металлов, так как внутри турбокомпрессора достигается невероятная температура. В состав турбинного колеса входит железоникелевый сплав, а в состав центрального корпуса — жаропрочная сталь.
От формы и размера турбины напрямую зависит производительность турбокомпрессора. Больший размер турбины увеличивает производительность компрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы. Номинальная скорость достигается гораздо быстрее при использовании турбокомпрессора меньшего размера, но они показывают меньшую производительность.
Перепускной клапан устанавливается в корпус турбины для управления уровнем давления наддува. Регулировка клапана производится при помощи системы управления двигателем. Клапан оснащён пневматическим приводом.
Вал располагается в центральном корпусе. Это позволяет ему достигать максимальной скорости вращения при минимальном трении. Вращение происходит в одном или двух подшипниках. Для этой цели подойдут различные конструкции подшипников скольжения. Шарикоподшипники используются редко.Система смазки двигателя обеспечивает полную смазку подшипников и вала. Промеж корпусом и подшипником имеется много пропускных каналов, через которые протекает масло. Помимо функции смазки, масло оказывает охлаждающий эффект на нагретые детали. Лучше всего охлаждение происходит в двигателях с искровым зажиганием, в которых центральный корпус турбины входит в систему охлаждения двигателя.
Дополнительный объем давления во впускной системе создаётся при воздействии центробежного компрессора. Его конструкция похожа на аналогичные механические нагнетатели. Составляющими центробежного компрессора являются корпус и компрессорное колесо. В ЦК (центробежный компрессор) поток воздуха проходит путь от центра колеса до корпуса. Резкое понижение скорости потока воздуха позволяет преобразовать его кинетическую энергию в давление. Впускной коллектор пропускает сжатые потоки воздуха в двигатель. При изготовлении компрессорного колеса и корпуса используется алюминий.
Для снижения последствий турбоямы и повышения производительности, конструкция турбокомпрессора постоянно совершенствуется. Наиболее востребованными техническими решениями являются — постоянная модернизация конструкции турбокомпрессора позволяет уменьшить последствия турбоямы и повысить его производительность. Ниже можно посмотреть список самых эффективных способов модернизации:
- При использовании прочных и лёгких материалов достигается значительное снижение массы турбины. Например, керамики.
- Установка новых подшипников с пониженным уровнем трения.
- Раздельный турбокомпрессор
- Турбина с изменяемой геометрией
Поговорим подробнее о последних двух пунктах этого списка.
Общие положения
Основные характеристики турбин представлены массовым расходом воздуха и скоростью потока. Площадь впускной части относится к ограничивающим производительность факторам. Варианты с изменяемой геометрией позволяют менять данную область. Так, эффективная площадь определяется высотой прохода и углом лопастей. Первый показатель изменяем в вариантах со скользящим кольцом, второй — в турбинах с поворотными лопатками.
Таким образом, турбокомпрессоры с изменяемой геометрией постоянно обеспечивают требуемый наддув. Благодаря этому оснащенные ими двигатели не имеют лагов, обусловленных временем раскрутки турбины, как с обычными большими турбонагнетателями, и не задыхаются на высоких оборотах, как с маленькими.
Наконец, следует отметить, что, несмотря на то, что турбокомпрессоры с изменяемой геометрией рассчитаны на работу без перепускного клапана, было установлено, что они обеспечивают прибавку производительности, прежде всего, на «низах», а на высоких оборотах при полностью открытых лопатках не в состоянии справиться с большим массовым расходом. Поэтому для предотвращения избыточного противодавления все же рекомендуется использовать вестгейт.
Привод
Среди приводов наиболее распространены пневматические варианты, где управление механизмом осуществляется поршнем, перемещаемым внутри цилиндра воздухом.
Положение лопастей регулируется мембранным приводом, связанным штоком с лопастным кольцом управления, поэтому горловина может постоянно изменяться. Актуатор приводит шток в зависимости от уровня вакуума, противодействуя пружине. Модуляция вакуума контролирует электрический клапан, подающий линейный ток в зависимости от параметров вакуума. Вакуум может создаваться вакуумным насосом усилителя тормозов. Ток подается от аккумулятора и модулирует ЭБУ.
Основной недостаток таких приводов обусловлен сложно предсказуемым состоянием газа после сжатия, особенно при нагреве. Поэтому более совершенными являются гидравлические и электрические приводы.
Гидравлические приводы функционируют по тому же принципу, что и пневматические, но вместо воздуха в цилиндре используется жидкость, которая может быть представлена моторным маслом. К тому же она не сжимается, вследствие чего такая система обеспечивает лучший контроль.
Для перемещения кольца электромагнитный клапан использует давление масла и сигнал ЭБУ. Гидравлический поршень перемещает зубчато-реечный механизм, вращающий зубчатую шестерню, вследствие чего лопасти шарнирно соединяются. Для передачи положения лопасти БУД по кулачку ее привода перемещается аналоговый датчик положения. При малом давлении масла лопасти открыты и закрываются с его возрастанием.
Электрический привод является наиболее точным, так как напряжение может обеспечить очень тонкий контроль. Однако он требует дополнительного охлаждения, которое обеспечивают трубками с охлаждающей жидкостью (в пневматических и гидравлических вариантах для удаления тепла используется жидкость).
Для привода устройства изменения геометрии служит селекторный механизм.
В некоторых моделях турбин используется вращающийся электрический привод с прямым шаговым двигателем. В данном случае положение лопастей регулируется электронным клапаном обратной связи через механизм реечной передачи. Для обратной связи с БУД служит прикрепленный к шестерне кулачок с магниторезистивным датчиком.
При необходимости поворота лопаток ЭБУ обеспечивает подачу тока в определенном диапазоне для перехода их в заданное положение, после чего, получив сигнал от датчика, обесточивает клапан обратной связи.
Эксплуатация дизельного двигателя с турбиной
Нужна регулярная проверка состояния воздушного фильтра при эксплуатации дизельного двигателя и его турбины. Это нужно потому, что при загрязнении фильтра возникает большое давление на всасывании воздуха.
Это, в свою очередь, приводит к тому, что работоспособность и производительность компрессора снижается. Из-за того, что масло имеет высокую степень вязкости ощущается дефицит смазки при запуске холодного двигателя. Именно поэтому мотор с турбиной требует значительного прогрева перед началом полноценной работы.
Ниже указаны основные признаки при неисправностях турбин дизельного двигателя:
1. Двигатель не может набрать максимальные обороты, а также присутствует черный выхлоп. Это скорее всего вызвано из-за недостаточного поступления воздуха. Таким образом можно определить, что воздушный канал был загрязнен. Также, можно предположить, что выпускной коллектор разгерметизировался. Очень часто наблюдается утечка через слабые и неплотные соединения патрубков.
2. Также, о неисправности турбины может рассказывать синий цвет у выхлопного газа. Основной причиной этого может быть попадание масла в сам выхлопной коллектор. В данном случае нужно проверить целостность роторов, а также полное состояние всей сливной системы, которая идет от турбины непосредственно к двигателю. Иногда в ней могут образовываться засоры и сужения.
3. Громкая работа двигателя также свидетельствует о неисправности его турбины. Для того, чтобы определить причины этого нужно очень тщательно проверить всю герметичность трубопроводов и легкость вращения оси у компрессора. Может быть такое, что были повреждены роторы, или деформированы, или чересчур потерты. В таком случае необходим демонтаж всего узла для полного осмотра и дальнейшего ремонта.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Как настроить и отрегулировать турбину
Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.
Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.
Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.
Как почистить турбину своими руками
Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.
Причинами сильных загрязнений могут выступать:
- Увеличение нормы давления газов.
- Износ лопастей турбины.
- Превышение необходимого срока эксплуатации поршневого отсека.
- Засора сапуна.
- Износ прокладок.
Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.
Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.
Механизм изменения геометрии
Механизм осуществления данного процесса определяется конструкцией. В моделях с вращающимися лопастями это достигается путем изменения их положения: для обеспечения узкого сечения лопатки располагаются перпендикулярно радиальным линиям, а для расширения канала они переходят в ступенчатое положение.
У турбин со скользящими кольцом и подвижной стенкой происходит осевое перемещение кольца, что также меняет сечение канала.
Принцип функционирования VFT основан на разделении потока. Ускорение его на низких оборотах осуществляется путем перекрытия заслонкой внешнего отсека канала, вследствие чего газы идут к ротору кратчайшим путем. При росте нагрузки заслонка поднимается, пропуская поток через оба отсека для расширения пропускной способности.
Для VAT и моделей Switchblade изменение геометрии осуществляется посредством поворота лопасти: на низких оборотах она поднимается, сужая проход для ускорения потока, а на высоких прилегает к турбинному колесу, расширяя пропускную способность. Для турбин Switchblade второго типа характерен обратный порядок работы лопасти.
Так, на «низах» она прилегает к ротору, вследствие чего поток идет только вдоль внешней стенки корпуса. С ростом оборотов лопатка поднимается, открывая проход вокруг крыльчатки для повышения пропускной способности.
Устройство системы турбонаддува
На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.
В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.
Принцип работы турбины
Система турбонаддува состоит из следующих элементов:
- Воздухозаборник;
- Воздушный фильтр;
- Перепускной клапан — регулирует подачу отработавших газов;
- Дроссельная заслонка — регулирует подачу воздуха на впуске;
- Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
- Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
- Датчики давления — фиксирует давление наддува в системе;
- Впускной коллектор — распределяет воздух по цилиндрам;
- Соединительные патрубки — необходимы для крепления элементов системы между собой.
Достоинства и недостатки
Подстройка турбины под режим работы двигателя обеспечивает улучшение всех показателей в сравнении с вариантами с фиксированной геометрией:
- лучшие отзывчивость и производительность во всем диапазоне оборотов;
- более ровная кривая крутящего момента на средних оборотах;
- возможность функционирования двигателя при частичной нагрузке на более эффективной обедненной топливо-воздушной смеси;
- лучшая тепловая эффективность;
- предотвращение чрезмерного наддува на высоких оборотах;
- лучшие экологические показатели;
- меньший расход топлива;
- расширенный рабочий диапазон турбины.
Основным недостатком турбокомпрессоров с изменяемой геометрией является значительно усложненная конструкция. Ввиду наличия дополнительных движущихся элементов и приводов они менее надежны, а обслуживание и ремонт турбин такого типа сложнее. К тому же модификации для бензиновых моторов очень дороги (примерно в 3 раза дороже обычных). Наконец, данные турбины сложно совместить с не рассчитанными на них двигателями.
Следует отметить, что по пиковой производительности турбины с изменяемой геометрией нередко уступают обычным аналогам. Это объясняется потерями в корпусе и вокруг опор подвижных элементов. К тому же максимальная производительность резко падает при отходе от оптимального положения. Однако общая эффективность турбокомпрессоров такой конструкции выше, чем у вариантов с фиксированной геометрией, ввиду большего рабочего диапазона.