Тепловой насос для отопления дома своими руками: устройство, принцип работы, схемы

Что такое тепловой насос и как он работает?

Под термином тепловой насос понимается набор определенного оборудования. Основной функцией этого оборудования является сбор тепловой энергии и ее транспортировка к потребителю. Источником такой энергии может стать любое тело или среда, обладающая температурой от +1º и более градусов.

В окружающей нас среде источников низкотемпературного тепла более чем достаточно. Это промышленные отходы предприятий, тепловых и атомных электростанций, канализационные стоки и пр. Для работы тепловых насосов в сфере отопления дома нужны три самостоятельно восстанавливающихся природных источника — воздух, вода, земля.Источники для работы теплового насоса
Тепловые насосы «черпают» энергию из процессов, регулярно происходящих в окружающей среде. Течение процессов никогда не прекращается, потому источники признаны неисчерпаемыми по человеческим критериям

Три перечисленных потенциальных поставщика энергии напрямую связаны с энергией солнца, которое путем нагревания приводит в движение воздух с ветром и сообщает тепловую энергию земле. Именно выбор источника является основными критерием, согласно которому классифицируют тепловые насосные системы.

Принцип действия тепловых насосов базируется на способности тел или сред передавать тепловую энергию другому телу или среде. Получатели и поставщики энергии в тепловых насосных системах работают обычно в паре.

Так различают следующие виды тепловых насосов:

  • Воздух — вода.
  • Земля — вода.
  • Вода — воздух.
  • Вода — вода.
  • Земля — воздух.
  • Вода — вода
  • Воздух — воздух.

При этом первое слово определяет тип среды, у которой система отбирает низкотемпературное тепло. Второе указывает на вид носителя, которому и передается эта тепловая энергия. Так, в тепловых насосах вода — вода, тепло отбирается у водной среды и в качестве теплоносителя используется жидкость.
Тепловые насосы по конструктивному типу являются парокомпрессионными установками. Они извлекают тепло из природных источников, обрабатывают и транспортируют его к потребителям (+)

Современные тепловые насосы используют три основных источника тепловой энергии. Это — грунт, вода и воздушная среда. Самый простой из этих вариантов — воздушный тепловой насос. Популярность таких систем связана с их довольно несложной конструкцией и простотой монтажа.

Однако несмотря на такую популярность, эти разновидности имеют довольно низкую производительность. К тому же КПД нестабилен и зависим сезонных колебаний температурного режима.

С понижением температуры их производительность значительно падает. Такие варианты тепловых насосов можно рассматривать как дополнение к имеющемуся основному источнику тепловой энергии.

Варианты оборудования, использующего тепло грунта, считаются более эффективными. Грунт получает и аккумулирует тепловую энергию не только от Солнца, он постоянно подогревается за счет энергии земного ядра.

То есть грунт является своеобразным тепловым аккумулятором, мощность которого, практически, не ограничена. Причем температура грунта, особенно на некоторой глубине, постоянна и колеблется в незначительных пределах.

Сфера применения энергии, вырабатываемой тепловыми насосами:

Постоянство температуры источника является важным фактором стабильной и эффективной работы данного вида энергетического оборудования. Аналогичными характеристиками обладают системы, в которых водная среда является основным источником тепловой энергии. Коллектор таких насосов располагают либо в скважине, где он оказывается в водоносном слое, либо в водоеме.

Среднегодовая температура таких источников, как грунт и вода, варьируется от +7º до + 12º С. Такой температуры вполне достаточно для того, чтобы обеспечить эффективную работу системы.

Принцип работы и производительность теплового насоса
Наиболее эффективными считаются тепловые насосы, извлекающие тепловую энергию из источников со стабильными температурными показателями, т.е. из воды и грунта

Разновидности тепловых насосов: аэротермальные, гидротермальные, геотермальные

Существует три основных вида тепловых насосов. Они отличаются источником получения тепла, ценой оборудования и стоимостью монтажа, параметрами работы.

1. Аэротермальные -воздушные тепловые насосы. Используют тепло из окружающего воздуха, из атмосферы. Особенность этого вида тепловых насосов в том, что для их монтажа не нужно тратиться на бурение скважин, рыть траншеи и проводить какие-либо иные трудоёмкие земляные работы – все узлы агрегата располагаются на поверхности. Это важный плюс, так как сметная стоимость существенно снижается, как и затраты времени на монтаж.

При всех перечисленных преимуществах у аэротермальных насосов есть один важный недостаток – они перестают работать при серьезных морозах. На их стабильную работу можно рассчитывать только при температуре не ниже -25℃, по этой причине воздушные насосы не могут полностью обогреть помещение при похолодании в регионах с суровыми зимами.ТН не «тянет» сильные морозы. При падении температуры воздуха до -25° и ниже, он не будет справляться с отоплением дома, поэтому в этом случае необходимо иметь дополнительный теплогенератор – электрический обогреватель или камин. В этом случае чаще используют комбинацию теплового насоса и электрического котла. При достижении уличной температуры -18-22℃, воздушный тепловой насос отключается, а электрический тэн полностью его замещает.

Еще один важный фактор, который нужно учитывать при выборе такого оборудования – это средняя влажность воздуха в том районе, где находится ваш дом. Идеальный вариант для таких систем – низкий уровень влажности и мягкие зимы. Если климат влажный и холодный, то установка воздушных тепловых насосов нецелесообразна: тепловые установки будут обледеневать и большее время стоять в режиме оттайки.

Воздушные тепловые насосы

2. Гидротермальные (водяные) насосы. Используют тепло воды близлежащего водоёма или грунтовых вод. Такие установки отличаются высокой стабильностью и эффективностью работы благодаря высокому коэффициенту теплоотдачи воды и низкому уровню температурных колебаний. Гидротермальный тепловой насос имеет смысл купить в следующих случаях:

  • на участке, где расположен ваш дом, залегают грунтовые воды в достаточном объёме или есть водоём;
  • глубина залегания грунтовых вод – не более 40 метров;
  • вода обладает свойствами, необходимыми для стабильной работы оборудования (низкий уровень содержания железа и иных примесей)

Скважины. Вариант со скважинной водой в качестве источника тепла наиболее сложный в монтаже и затратный. Он предполагает бурение двух скважин: одна будет служить для забора воды, другая – для её сброса.

Водоёмы. Какие водоёмы могут использоваться? К их числу относятся море, река или озеро, которые должны быть расположены не далее 50 метров от дома. Коллектор (трубы с хладагентом) укладывают на дно водоёма и утяжеляют грузом. Благодаря высокой температуре рабочей жидкости обеспечивается высокий КПД установки и существенная экономия на отоплении. Тем, кто живёт в регионе с мягким климатом, на побережье моря, или неподалёку от глубокого озера или реки, водяной тепловой насос способен стать источником бесплатной энергии на долгие годы.

Стоки. Еще один источник воды, который может использоваться такими насосами – это канализационные стоки. Они успешно применяются в качестве источника тепла для систем горячего водоснабжения и отопления – как частных домов, так и многоэтажек.

3. Геотермальные (грунтовые) насосы. Такой агрегат для подогрева рабочей жидкости в испарителе использует тепло грунта. Это бесконечный источник энергии, так как температура грунта ниже уровня промерзания не меняется и не зависит от погодных условий. Уже на глубине 3 метра температура грунта варьируется от +5 до +8℃, а на 10 метрах она составляет уже +10 ℃.

Системы отопления, основой которых является геотермальный насос тепла, имеют высокую эффективность, могут круглогодично поддерживать в доме комфортный микроклимат.

Использование грунтового теплового насоса подразумевает закладку трубопровода с хладагентом в грунт рядом с домом. При этом существует два варианта размещения трубы системы.

Вертикальный геотермальный зонд. В этом случае трубы располагаются в вертикальной плоскости. Глубина их размещения может достигать 100 метров, что делает этот вариант достаточно затратным. Еще один нюанс – необходимость согласования с надзорными органами бурения скважин такой глубины. Преимуществом такого технического решения является экономия площади участка.

Альтернативой глубокой закладки труб является схема, при которой используются несколько геотермальных вертикальных зондов. Они заглубляются в грунт на 20 метров и располагаются на расстоянии 5-7 метров друг от друга. При использовании такого метода эффективность зондов (удельный теплосъём) определяется типом грунта. Наиболее выигрышный – это каменистая обводненная почва, которая хорошо проводит тепло (70 Вт/м). Влажные осадочные породы обеспечивают до 50 Вт/м. Наименее «эффективны» будут сухие осадочные породы – в этом случае теплосъём не будет превышать 30 Вт/м.

Подытожим: устройство геотермальных вертикальных зондов обходится дорого из-за глубокого бурения, однако имеет свои преимущества: высокий удельный теплосъем, гарантированная стабильность температуры, экономия площади участка и минимальные повреждения ландшафта.

Горизонтальный контур (коллектор). При такой схеме расположения труб они помещаются в грунт на незначительную глубину (ниже уровня промерзания грунта – от 1,2 до 3 метров), и располагаются на большой площади. Длина труб геоконтура в каждом отдельном случае рассчитывается индивидуально. Для этой цели могут быть использованы полиэтиленовые трубы разного диаметра (от 25 до 40 мм), которые располагаются на расстоянии 500-1000 мм друг от друга.

В зависимости от проекта коллектор может иметь разную форму (спираль, зигзаг, петли и т.д.). После закладки трубы коллектора заполняются рабочей жидкостью (антифризом), который вбирает тепло от грунта, перемещает его к тепловому насосу и отдаёт хладагенту. После этого охлажденный антифриз снова возвращается в подземный контур и цикл повторяется.

Эффективность насоса определяется характеристиками грунта, как источника тепла. К примеру, насыщенная влагой глина обеспечивает до 25 Вт на метр трубы, сухая глина 15-18 Вт/м, песок (сухой) — 10 Вт/м. Для примера – чтобы обеспечить отопление дома площадью 100 м2, потребуется свободная территория площадью в 400 квадратных метров. Из этого можно сделать вывод, что геотермальные насосы с горизонтальным коллектором подойдут владельцам участков с большой площадью, которая свободна от построек.

Цены и производители

Примерная средне рыночная стоимость оборудования и его установки составляет:

Горизонтальный коллектор:

  • Насос – 4500$;
  • монтаж — 2500$;
  • стоимость эксплуатации — 350$ в год.

Геотермальный зонд:

  • Насос – 4500$;
  • монтаж — 4500$;
  • стоимость эксплуатации — 320$ в год.

Воздушный — для дома:

  • Насос – 6500$;
  • монтаж — 400$;
  • стоимость эксплуатации — 480$ в год.

Насос для дома «вода-вода»:

  • Тепловой насос – 4500$;
  • монтаж — 3500$;
  • стоимость эксплуатации — 280$ в год.

Приведенные цены не окончательны. Конечная стоимость будет зависеть от страны и компании-производителя устройства, типа местности, климатических особенностей, цены бурения, строительных условий и т.д. Например, цена воздушного насоса от российского производителя составит около 7000$, а от зарубежного – 13000$.

Также не нужно забывать о стоимости электроэнергии. Несмотря на то, что оборудование не потребляет много электричества, эти расходы непременно следует учитывать при составлении общей сметы и планировании бюджета.

Основные элементы конструкции тепловых насосов

Для того чтобы установка получения энергии работала согласно принципам работы теплового насоса, в его конструкции должны присутствовать 4 основных агрегата, это:

  • Компрессор.
  • Испаритель.
  • Конденсатор.
  • Дроссельный клапан.

Важным элементом конструкции теплового насоса является компрессор. Его основная функция — повышение давления и температуры паров, образующихся в результате кипения хладагента. Для климатической техники и тепловых насосов в частности применяются современные спиральные компрессоры.
В качестве рабочего тела, осуществляющего непосредственный перенос тепловой энергии, используются жидкости с низкой температурой кипения. Как правило, используется аммиак и фреоны (+)

Такие компрессоры рассчитаны на эксплуатацию при минусовых температурах. В отличие от других разновидностей спиральные компрессоры производят мало шума и работают, как при низких температурах кипения газа, так и при высоких температурах конденсации. Несомненным преимуществом считаются их компактные размеры и небольшой удельный вес.

Агрегаты системы теплового насоса
Практически вся энергия теплового насоса затрачивается на транспортировку тепловой энергии извне внутрь помещения. Так на работу систем уходит около 1 энергетической единицы при производстве 4 — 6 единиц (+)

Испаритель как конструктивный элемент представляет собой емкость, в которой происходит превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.

В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.

Компрессор - значимый агрегат теплового насоса
Компрессор сжимает циркулирующую по контуру среду, в результате чего увеличивается ее температура и давление. Затем сжатая среда поступает в теплообменник (конденсатор), где охлаждается, передавая тепло воде либо воздуху

Следующий конструктивный элемент системы — конденсатор. Его функция сводится к отдаче тепловой энергии внутреннему контуру отопительной системы.

Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.

Самодельный теплообменник для теплового насоса
Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм

Терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую — с низкими.

При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему.

С помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.

Дроссельный клапан теплового насоса
При прохождении через теплорегулирующий клапан жидкий теплоноситель частично испаряется, а температура потока понижается (+)

Выбор типа теплового насоса

Основным показателем этой системы обогрева является мощность. От мощности в первую очередь будут зависеть и финансовые затраты на покупку оборудования и выбор того либо иного источника низкотемпературного тепла. Чем выше мощность тепловой насосной системы, тем больше стоимость комплектующих элементов.

В первую очередь имеется в виду мощность компрессора, глубина скважин для геотермических зондов, либо площадь для размещения горизонтального коллектора. Правильные термодинамические расчеты являются своеобразной гарантией того, что система будет эффективно работать.

Как своими руками сделать тепловой насос вода-вода
При наличии рядом с личным участком водоема наиболее рентабельным и производительным выбором станет тепловой насос вода-вода

Для начала следует изучить участок, который планируется для монтажа насоса. Идеальным условием будет наличие на этом участке водоема. Использование варианта типа вода-вода значительно сократит объем земляных работ.

Использование тепла земли напротив предполагает большое количество работ, связанных с выемкой грунта. Системы, которые в качестве низкопотенциального тепла используют водную среду, считаются наиболее эффективными.

Коллектор теплового насоса земля-вода
Устройство теплового насоса, извлекающего тепловую энергию из грунта, предполагает проведение внушительного количества земляных работ. Закладывается коллектор ниже уровня сезонного промерзания

Использовать тепловую энергию грунта можно двумя способами. Первый предполагает бурение скважин диаметром 100-168 мм. Глубина таких скважин, в зависимости от параметров системы, может достигать 100 м и более.

В эти скважины помещают специальные зонды. При втором способе используется коллектор из труб. Такой коллектор размещается под землей в горизонтальной плоскости. Для этого варианта необходимо достаточно большая площадь.

Для укладки коллектора идеальными считаются участки с влажным грунтом. Естественно, бурение скважин обойдется дороже, нежели горизонтальное расположение коллектора. Однако не на каждом участке есть свободные площади. На один кВт мощности теплового насоса нужно от 30 до 50м² площади.

Конструкция теплового насоса земля вода
Сооружение для забора тепловой энергии одной глубокой скважиной может оказаться немногим дешевле рытья котлована. Но веский плюс заключается в существенной экономии места, что важно для владельцев небольших участков

В случае с наличием на участке высоко залегающего горизонта грунтовых вод, теплообменники можно устроить в двух расположенных на расстоянии около 15 м друг от дружки скважинах.

Отбор тепловой энергии в таких системах путем перекачивания грунтовой воды по замкнутому контуру, части которого расположены в скважинах. Такая система нуждается в установке фильтра и периодической чистке теплообменника.

Самая простая и дешевая схема теплового насоса основана на извлечении тепловой энергии из воздуха. Некогда она стала базой для устройства холодильников, позже согласно ее принципам разработаны были кондиционеры.

Какой тепловой насос проще соорудить своими руками
Самая простая тепловая насосная система получает энергию из воздушной массы. Летом она участвует в отоплении, зимой в кондиционировании. Минус системы в том, что в самостоятельном исполнении агрегат с недостаточной мощностью

Эффективность различных типов данного оборудования не одинакова. Наименьшими показателями обладают насосы, использующие воздушную среду. К тому же эти показатели напрямую зависят от погодных условий.

Грунтовые разновидности тепловых насосов имеют стабильные показатели. Коэффициент эффективности данных систем варьируется в пределах 2,8 -3,3. Наибольшей эффективность обладают системы вода-вода. Это связано, в первую очередь, со стабильностью температуры источника.

Надо заметить, что чем глубже расположен в водоеме коллектор насоса, тем стабильнее будет температура. Для получения мощности системы в 10КВт, необходимо около 300 метров трубопровода.

Основным параметром, характеризующим эффективность работы теплового насоса, считается его коэффициент преобразования. Чем выше коэффициент преобразования, тем эффективнее считается тепловой насос.

КПД теплового насоса для отопления дома
Коэффициент преобразования теплового насоса выражается через отношение показателей теплового потока и электрической мощности, затраченной на работу компрессора

Когда установка насоса нерентабельна

Найти в городе свободные участки земли для расположения внешнего контура ТН типа «грунт-вода» практически невозможно. Проще установить на внешней стене здания воздушный тепловой насос, который особенно выгоден в южных регионах. Для более холодных территорий с продолжительными морозами существует вероятность обледенения наружной радиаторной решетки сплит-системы.

Высокий коэффициент полезного действия ТН обеспечивается при выполнении следующих условий:

  1. Обогреваемое помещение должно иметь утепленные внешние ограждающие конструкции. Максимальная величина тепловых потерь не может превышать 100 Вт/м2.
  2. ТН способен работать эффективно только с инерционной низкотемпературной системой «теплый пол».
  3. В северных регионах ТН следует использовать совместно с дополнительными источниками тепла.

Когда температура наружного воздуха резко падает, то инерционный контур «теплого пола» просто не успевает прогревать помещение. Зимой так бывает часто. Днем солнышко пригрело, на градуснике —5 °С. Ночью температура может быстро опуститься до —15 °С, а если подует сильный ветер, то мороз будет еще сильнее.

Тогда надо установить под окнами и вдоль наружных стен обычные батареи. Но температура теплоносителя в них должна быть в два раза выше, чем в контуре «теплого пола». Дополнительную энергию в загородном коттедже может дать камин с водяным контуром, а городской квартире — электрический котел.

Остается только определить, будет ли ТН основным или дополняющим источником тепла. В первом случае он должен компенсировать 70 % общего количества тепловых потерь помещения, а во втором — 30 %.

Видео. В ролике проводится визуальное сравнение достоинств и недостатков различных типов тепловых насосов, подробно объясняется устройство системы «воздух-вода».

Критерии правильного выбора

Подбор насоса – серьезный и ответственный процесс. При этой процедуре надо обязательно учитывать среду нагрева теплоносителя в первичном контуре. Также на выбор влияет температура, где будет работать оборудование. Температура теплоносителя должна быть не менее 6 градусов, иначе насос не обеспечит желаемую эффективность.

Огромное влияние на качество работы оборудования оказывает и место его монтажа. Желательно устанавливать систему в сухом отапливаемом помещении. Это позволит избежать дополнительных затрат тепла.

Чтобы безошибочно выбрать отопительное устройство, надо учесть такие нюансы:

  • нужная для функционирования мощность оборудования;
  • коэффициент эффективности тепла.


Чтобы безошибочно подобрать оборудование, рекомендуется использовать такую схему:

  • Если территория не больше, чем 15 соток, а постройка не больше 100 м2, для обогрева рекомендуется выбрать насос «воздух-вода» или «воздух-воздух».
  • Если территория около 20 соток, а площадь дома до 250 м2 и комнаты в нем большие, лучше установить устройство «воздух-вода». Но такое оборудование подойдет для домашнего пользования, только если пол утеплен или же к системе присоединен радиатор с высокой мощностью.
  • Если площадь дома больше 250 м2, то в данной ситуации уместно использование для помещений геотермального насоса с большим теплообменником.

Его лучше устанавливать в нескольких скважинах с глубиной минимум 80 м.


Эффективность и производительность оборудования зависит от его комплектации. Новые виды насосов дополняются всевозможными функциями и приспособлениями, такими как опция подсушивания.

Если подбор теплового насоса для циркуляции воды выполнен с учетом всех требований и особенностей участка, то в доме всегда будет комфортная атмосфера, независимо от погоды. Помимо этого, можно сэкономить свой бюджет. Учтите, если покупка системы обошлась дорого, спустя пару лет интенсивной эксплуатации оборудование окупит себя.

При выборе оборудования также стоит учитывать отзывы пользователей – система с наивысшим рейтингом будет радовать вас своей работой.


Устройство и принцип действия теплового насоса

По мере погружения в земную кору, на поверхности которой мы живём и чья толщина составляет на суше около 50–80 км, повышается её температура — это связано с близостью верхнего слоя магмы, температура которого примерно равна 1300 °С. На глубине от 3 метров температура грунта в любое время года положительная, с каждым километром глубины она повышается в среднем на 3–10 °С. Рост температуры грунта с его глубиной зависит не только от климатической зоны, но и от геологии грунтов, а также эндогенной активности в данном районе Земли. К примеру, в южной части африканского континента рост температуры на километр глубины грунта составляет 8 °С, а в штате Орегон (США), на территории которого отмечена достаточно высокая эндогенная активность — 150 °С на каждый километр глубины. Однако для эффективной работы теплового насоса подводящий к нему тепло внешний контур вовсе не нужно зарывать на сотни метров под землю — источником тепловой энергии может быть любая среда, имеющая температуру больше 0 °С.

Тепловой насос осуществляет перенос тепловой энергии из воздуха, воды или грунта, повышая в процессе переноса температуру до необходимой за счёт компрессии (сжатия) хладагента. Существует два основных типа тепловых насосов — компрессионные и сорбционные.

Тепловой насос для отопления дома своими руками
Принципиальное устройство компрессионного теплового насоса: 1 — земля; 2 — циркуляция рассола; 3 — циркуляционный насос; 4 — испаритель; 5 — компрессор; 6 — конденсатор; 7 — система отопления; 8 — хладагент; 9 — дроссель

Несмотря на сбивающее с толку название, компрессионные тепловые насосы относятся не к отопительным, а к холодильным устройствам, поскольку работают по тому же принципу, что и любые холодильники или кондиционеры. Отличие теплового насоса от хорошо известных нам холодильных установок в том, что для его работы требуется, как правило, два контура — внутренний, в котором циркулирует хладагент, и внешний, с циркуляцией теплоносителя.

В процессе работы этого устройства хладагент внутреннего контура проходит следующие этапы:

  • охлаждённый хладагент в жидком состоянии поступает по контуру через отверстие капилляра в испаритель. Под влиянием быстрого понижения давления хладагент испаряется и переходит в газообразное состояние. Двигаясь по изогнутым трубкам испарителя и контактируя в процессе движения с газообразным или жидким теплоносителем, хладагент получает от него низкотемпературную тепловую энергию, после чего поступает в компрессор;
  • в камере компрессора хладагент сжимается, при этом резко возрастает его давление, что вызывает повышение температуры хладагента;
  • из компрессора горячий хладагент следует по контуру в змеевик конденсатора, выступающий в роли теплообменника — здесь хладагент отдаёт тепло (порядка 80–130 °С) теплоносителю, циркулирующему в отопительном контуре дома. Утратив большую часть тепловой энергии, хладагент возвращается в жидкое состояние;
  • при прохождении через расширительный клапан (капилляр) — он расположен во внутреннем контуре теплового насоса, следующим после теплообменника — остаточное давление в хладагенте снижается, после чего тот поступает в испаритель. С этого момента рабочий цикл повторяется вновь.

Устройство воздушного теплового насоса
Принцип работы воздушного теплового насоса

Таким образом, внутреннее устройство теплового насоса состоит из капилляра (расширительного клапана), испарителя, компрессора и конденсатора. Работой компрессора управляет электронный терморегулятор, прекращающий подачу электропитания к компрессору и останавливающий тем самым процесс выработки тепла при достижении заданной температуры воздуха в доме. При снижении температуры ниже определённого уровня, терморегулятор в автоматическом режиме включает компрессор.

В качестве хладагента во внутреннем контуре теплового насоса циркулируют фреоны R-134а или R-600а — первый на основе тетрафторэтана, второй на основе изобутана. Оба данных хладагента — безопасны для озонового слоя Земли и экологически чисты. Компрессионные тепловые насосы могут иметь привод от электромотора или от двигателя внутреннего сгорания.

В сорбционных тепловых насосах используется абсорбция — физико-химический процесс, в ходе которого газ или жидкость увеличиваются в объёме за счёт другой жидкости под воздействием температуры и давления.

Принципиальная схема абсорбционного теплового насоса
Принципиальная схема абсорбционного теплового насоса: 1 — нагреваемая вода; 2 — охлаждаемая вода; 3 — греющий пар; 4 — нагретая вода; 5 — испаритель; 6 — генератор; 7 — конденсатор; 8 — неконденсирующиеся газы; 9 — вакуумный насос; 10 — конденсат греющего пара; 11 — растворный теплообменник; 12 — газоотделитель; 13 — абсорбер; 14 — растворный насос; 15 — насос хладагента

Абсорбционные тепловые насосы оборудованы термическим компрессором, работающим на природном газе. В их контуре находится хладагент (обычно аммиак), испаряющийся при низкой температуре и давлении, поглощая при этом тепловую энергию из среды, окружающей циркуляционный контур. В парообразном состоянии хладагент поступает в теплообменник-абсорбер, где, в присутствии растворителя (как правило, воды), подвергается абсорбции и передаче теплоты растворителю. Подача растворителя производится при помощи термосифона, обеспечивающего циркуляцию за счёт разницы давлений между хладагентом и растворителем, или насоса с низким энергопотреблением в установках большой мощности.

В результате соединения хладагента и растворителя, температура кипения которых различна, тепло, доставленное хладагентом, вызывает испарение их обоих. Хладагент в парообразном состоянии, имеющий высокую температуру и давление, поступает по контуру в конденсатор, переходит в жидкое состояние и отдаёт тепло теплообменнику отопительной сети. После прохождения через расширительный клапан хладагент переходит в исходное термодинамическое состояние, аналогичным образом возвращается в исходное состояние растворитель.

Преимущества абсорбционных тепловых насосов — в возможности работы от любого источника тепловой энергии и полном отсутствии движущихся элементов, т. е. бесшумности. Недостатки — меньшая мощность, по сравнению с компрессионными агрегатами, высокая стоимость, объясняющаяся сложностью конструкции и потребностью в использовании устойчивых к коррозии материалов, сложно поддающихся обработке.

Абсорбционная теплонасосная установка
Абсорбционная теплонасосная установка

В адсорбционных тепловых насосах используются твёрдые материалы, как силикагель, активированный уголь или цеолит. В ходе первого рабочего этапа, называемого фазой десорбции, к камере теплообменника, покрытой изнутри сорбентом, подводится тепловая энергия, к примеру, от газовой горелки. Нагрев вызывает парообразование хладагента (воды), полученный пар доставляется ко второму теплообменнику, в первой фазе отдающему полученное при конденсации пара тепло в отопительную систему. Полное осушение сорбента и завершение конденсации воды во втором теплообменнике завершает первый этап работы — подача тепловой энергии в камеру первого теплообменника прекращается. На втором этапе теплообменник с конденсированной водой становится испарителем, доставляя хладагенту тепловую энергию из внешней среды. В результате соотношения давлений, достигающего 0,6 кПа, при контакте тепла из внешней среды хладагент выпаривается — водяной пар поступает обратно в первый теплообменник, где адсорбируется в сорбент. Тепло, которое отдаёт пар в процессе адсорбции, передаётся системе отопления, после чего цикл повторяется. Следует отметить, что адсорбционные тепловые насосы для использования в бытовых целях не подходят — предназначены лишь для зданий большой площади (от 400 м2), менее мощные модели находятся всё ещё в стадии разработки.

Сводная таблица моделей

В статье мы рассмотрели наиболее популярные модели, выявили их сильные и слабые стороны.  С перечнем моделей можете ознакомиться в следующей таблице:

Сводная таблица моделейМодель (страна производитель)ОсобенностиЦена, руб.

Тепловые насосы для отопления небольших помещений или под ГВС
1. Huch EnTEC VARIO КНР S2-E (Германия) Система «воздух-вода»; работает от однофазной сети; выступающая конденсационная линия вставляется в бак с водой. 184 493
2. NIBE F1155-6 EXP (Швеция) «Рассол-вода»; питание от трёхфазной сети; вариативное управление мощностью; возможность подключения дополнительного оборудования – рекуператора, разнотемпературного оборудования. 355 161
3. Fujitsu WSYA100DD6 (Япония) Тепловой насос типа «воздух – вода» с питанием от сети 220V и функцией защиты от замерзания. 524 640
Оборудование для отопительных систем коттеджей под ПМЖ
4. Vaillant geoTHERM VWW 61/3 (Германия) Схема «вода – вода». Для того чтобы ТН мог выдавать стабильные 62 °С теплоносителя в системе отопления, возможности комплекта из компрессора и насосов (1.5 кВт) дополняет электронагреватель мощностью в 6 кВт. 408 219
5. LG Therma V AH-W096A0 9 кВт (Корея) На базе схемы «воздух-вода», в одном приборе, состоящим из двух блоков, реализованы потенциалы охладительного и нагревательного устройств. 275 000
6. STIEBEL  ELTRON WPF 10MS (Германия ) «рассол-вода», прибор прогревает теплоноситель для радиаторов до 60 °С, может использоваться при организации каскадных систем отопления. 323 300
7. Daikin EGSQH (Япония) В одном корпусе с геотермальным насосом размещён накопительный бак для системы горячего водоснабжения, на 180 литров теплоносителя 1 607 830
Мощные тепловые насосы для нужд систем отопления и горячего водоснабжения
8. WATERKOTTE EcoTouch DS 5027.5 Ai (Германия) Возможен отбор тепла от грунта и грунтовых вод; возможны эксплуатация в составе каскадных систем и удалённое управление; работает от трёхфазной сети. 708 521
9. DANFOSS DHP-R ECO 42  (Швеция)   9.6= 42 65 380 «рассол-вода»; управление мощностью компрессора и частотой вращения циркуляционных насосов осуществляется посредством частотной регулировки; дополнительный теплообменник; сеть – 380 V. 1 180 453
10. Viessmann Vitocal 300-G WWC 110 (Германия) схема работы «вода-вода»; встроенные насосы первичного и вторичного контура; предусмотрена возможность подключения гелиосистем. 630 125
Понравилась статья? Поделиться с друзьями:
Дачная жизнь
Adblock
detector