Теплота сгорания угля: разновидности, марки, характеристика каменного и древесного топлива, принцип изготовления

Содержание
  1. Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
  2. Ниже всего температура при сгорании дров из тополя
  3. Правила сжигания
  4. Зависимость от влажности
  5. Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
  6. Как сделать в домашних условиях
  7. В яме
  8. В бочке
  9. В печке
  10. Измерение количества теплоты горения
  11. Уголь
  12. Удельная теплота сгорания газообразного топлива и горючих газов
  13. Оборудование для производства древесного угля
  14. Табличные данные
  15. Маркировка продукции
  16. Где можно найти значения q
  17. Физика 7,8,9,10,11 класс, ЕГЭ, ГИА
  18. Удельная теплота сгорания некоторых горючих материалов
  19. Технология процесса производства
  20. Выбор сырья
  21. ГОСТ 24260-80 Сырье древесное для пиролиза и углежжения. Технические условия
  22. Сушка древесины
  23. Пиролиз
  24. Прокалка
  25. Теория теплоёмкости
  26. Два вида химических реакций и энергия
  27. Повышая температуру, мы ускоряем химические реакции
  28. Эффективность нагревателей
  29. Производство древесного угля как бизнес
  30. Недостатки использования горения
  31. Химический возраст твердого топлива
  32. Применение
  33. Плавление аморфных веществ .
  34. Брикеты
  35. Пеллеты

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·106 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.
Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

Ниже всего температура при сгорании дров из тополя

Имеет значение форма: чем мельче поленья, тем легче загораются и быстрее сгорают. Понятно, длина зависит и от конструкции: в печи или камине слишком длинные нельзя расположить, концы выпирают наружу. Слишком короткие – лишний труд при распиле или рубке. Температура горения дров зависит от размера влажности, породы дерева, количества подведенного воздуха. Ниже всего температура при сгорании дров из тополя, выше при горении твердых пород: ясеня, горного клена, дуба.

О значении влажности писалось выше. От нее и сильно зависят не только теплоотдача топлива в печи, но и трудозатраты на раскол или распиливание. Легче колется и пилится влажная, свежесрубленная древесина. Впрочем, слишком влажная вязкая, от этого колется плохо. Комлевая часть плотнее, а выкорчеванные пни, участки возле сучков обладают повышенной крепостью. Там слои дерева переплетаются, от этого намного прочнее. Дуб хорошо раскалывается в продольном направлении, что издревле используют бондари. Получение гонты, дранки, колка дров имеет свои секреты.


Еловые дрова

Ель – «стреляющая» порода, оттого нежелательная для использования в каминах или кострах. При нагреве внутренние «пузыри» со смолой вскипают и отбрасывают горящие частицы довольно далеко, что опасно: легко прожечь одежду возле костра. Или может привести к возгоранию возле камина. В закрытой топке печи это неважно. Береза даёт жаркое пламя, это отличные дрова. Но при плохой тяге у неё образуется много смолистых веществ (раньше делали берёзовый деготь), много откладывается сажи. Ольха и осина, напротив, дает мало сажи. Именно из осины, в основном, делают спички.

На практике удобно свежесрубленные дрова сразу распилить и расколоть. Потом сложить под навесами, делая поленницы так, чтобы воздух проходил, просушивая топливо и увеличивая теплоотдачу. Колка дров – трудоемкое занятие, поэтому покупая, обращайте на это внимание. А еще на то, сложенные или насыпью дрова вам привезут.

Во втором случае печное топливо размещается в кузове «рыхлее», и клиент платит частично за воздух. К тому же используемое для обогрева жидкое или газообразное топливо имеет плюс: легко автоматизировать подачу. Дрова требуют много ручной работы. Это всё стоит учитывать при выборе печи или котла для жилища.

Правила сжигания

Когда потребитель знакомится с температурой горения того или иного угля, ему нужно учитывать, что производители указывают только те цифры, которые являются актуальными для идеальных условий. Конечно, в обычном бытовом котле или печи воссоздать необходимые параметры просто невозможно. Современные теплогенераторы из металла или кирпича просто не рассчитаны на столь высокие температуры, так как основной теплоноситель в системе может быстро закипеть. Именно поэтому параметры сгорания того или иного топлива определяются режимом его сжигания.

Иными словами, все зависит от интенсивности подачи воздуха. Как ископаемый, так и древесный уголь хорошо нагревает помещение, если уровень поступления кислорода достигает 100%. Чтобы ограничить воздушный поток, можно использовать специальную заслонку/задвижку. Такой подход позволяет создать наиболее благоприятные условия сгорания заправленного топлива (до 950˚С).

Если уголь используется в твердотопливном котле, тогда нельзя допустить вскипание теплоносителя. Основная опасность связана с тем, что предохранительный клапан может просто не сработать, а это чревато большим взрывом. К тому же смесь воды и горячего пара плохо воздействует на функциональные способности циркуляционного насоса. Специалистами были разработаны два наиболее эффективных способа, которые позволяют контролировать процесс горения:

  1. Дроблённое или порошковое топливо должно поступать в котёл исключительно в дозированном объёме (действует та же схема, что и в пиллетных устройствах).
  2. Основной энергоноситель загружается в топку, после чего регулируется интенсивность подачи воздуха.

Зависимость от влажности

Чем выше влажность, тем хуже горение, ниже КПД печи, сложнее зажечь и поддержать огонь. И меньше теплотворная способность дров.


Показатели теплотворной способности (количество теплоты, выделившееся при полном сгорании 1 кг дров в зависимости от влажности)

Снижается и удельная теплота печного топлива, и коэффициент её использования. Причины следующие.

  1. Вода в составе снижает количество топлива как такового: при влажности 50% в дровах воды – половина. И гореть она не будет…
  2. Часть энергии печного топлива потратится на нагрев и испарение влаги.
  3. Мокрая древесина лучше проводит тепло, что мешает прогреть поджигаемую часть полена до температуры возгорания.

Свежесрубленная древесина разнится по влажности в зависимости от времени рубки, породы дерева, места произрастания, но в среднем воды в ней около 50%.

Поэтому её и складывают в поленницы под навесом. За время хранения часть влаги испарится. При снижении влажности с 50 до 20% увеличивается удельная теплота сгорания печного топлива приблизительно вдвое.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, авиационный керосин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и этиленгликоль — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.
Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Как сделать в домашних условиях

Очень часто изготовлением древесного угля в домашних условиях занимаются люди, владеющими мастерскими по ковке металла. Домашнее биотопливо делается для бытовых нужд: приготовления пищи на мангале, заправки кузнечного горна. Перед тем, как сделать древесный уголь своими руками, необходимо выбрать способ изготовления и организовать производственные цехи, учитывая правила пожарной безопасности. Делать древесный уголь в домашних условиях можно при помощи подручных материалов. При этом часто не соблюдается технология изготовления материала. При производстве этого продукта используют ямы, бочки и печки. Перед тем, как самому сделать мастерскую по изготовлению угля, нужно оценить количество затрат и рентабельность бизнес-проекта.

В яме

Этот способ предполагает наличие ямы, расположенной на дальнем расстоянии от зданий. Ее глубина должна составлять не менее 150 см, ширина – 80 см. Для изготовления древесного угля в яме нужно разжечь костер из мелких веток. Его требуется поместить в яму. В костер забрасываются заготовки средних размеров. После сгорания дров яму необходимо накрыть настилом и оставить ее на несколько дней для охлаждения. Полученную продукцию можно извлечь в течение 2 дней.

В бочке

При изготовлении древесного угля в бочке необходимо использовать емкости из жаростойких материалов. Дно металлической бочки укрепляется кирпичами. Между ними располагается костер, на который кладутся деревянные заготовки. На скопление дров накладывается металлическая решетка, пропускающая тепло и пламя. Эта конструкция позволяет изготавливать в бочке несколько порций угля.

В печке

Изготовлять уголь можно в стандартной печке. Для этого заготовки нужно поместить дрова в топливный отсек и нагреть их до 550 °С. Необходимо дождаться момента, когда древесина приобретет красный оттенок. Полученное топливо извлекается при помощи щипцов, помещается в металлическую емкость и накрывается крышкой. После остывания продукт можно упаковывать в мешки и использовать в бытовых условиях.

Измерение количества теплоты горения

Чем выше удельная теплоемкость горючего материала, тем экономичнее его расход. Количество теплоты, которая образуется при горении топлива, можно вычислить следующими способами.

  1. Теоретический способ. Зная, что такое удельная теплота сгорания топлива и ее формулу, можно вывести формулу нахождения количества тепла. Итак, если q = Q/m, то Q = q * m.
  2. Практический способ. На практике количество теплоты, образующейся вследствие реакции горения, измеряется при помощи специальных сосудов — калориметров. Калориметр показывает количество энергии, которая выделяется в результате полного сжигания определенной навески вещества в контейнере, помещенном в воду. По разнице показания температур воды определяют количество выделившейся энергии.

Уголь

Это природный материал растительного происхождения, добываемый из осадочной породы.

В таком виде твердого топлива содержатся углерод и прочие химические элементы. Существует деление материала на типы в зависимости от его возраста. Самым молодым считается бурый уголь, за ним идет каменный, а старше всех остальных типов – антрацит. Возрастом горючего вещества определяется и его влажность, которая в большей степени присутствует в молодом материале.

В процессе горения угля происходит загрязнение окружающей среды, а на колосниках котла образуется шлак, создающий в определенной мере препятствие для нормального горения. Наличие серы в материале также является неблагоприятным для атмосферы фактором, поскольку в воздушном пространстве этот элемент преобразуется в серную кислоту.

Однако потребители не должны опасаться за свое здоровье. Производители этого материала, заботясь о частных клиентах, стремятся уменьшить содержание в нем серы. Теплота сгорания угля может отличаться даже в пределах одного типа. Разница зависит от характеристик подвида и содержания в нем минеральных веществ, а также географии добычи. В качестве твердого топлива встречается не только чистый уголь, но и низкообогащенный угольный шлак, прессованный в брикеты.

Вид угля Удельная теплота сгорания материала
кДж/кг ккал/кг
Бурый 14 700 3 500
Каменный 29 300 7 000
Антрацит 31 000 7 400

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается водород. При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого метана 50 МДж/кг).
Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)

Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H2 и 50% CH4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H2 50% CO2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Оборудование для производства древесного угля

Для создания древесного угля требуются следующие приспособления:

  1. Пиролизная бочка: здесь осуществляется сухая перегонка сырья. Это устройство также используется в качестве утилизатора. При беспрерывном производстве сырья применяют стационарные пиролизные бочки, имеющие большие габариты.
  2. Вертикальная реторта: предназначена для воспроизведения химических реакций горения. Используется для сушки древесины.
  3. Дровокол: используется для заготовки и сортировки сырья. Его отличительной особенностью является высокий коэффициент полезного действия. Дровоколы устойчивы к воздействию трения.

Схема углевыжигательной печи

При производстве угля также используется большое количество вспомогательного оборудования. В эту категорию входят автоматические линии фасовки, весовые дозаторы и сепараторы.

Табличные данные

На сегодняшний день измерены q всех известных веществ. В таблице приведены значения q для наиболее распространенных горючих материалов:

Вид топлива q в мДЖ/кг
Метан 50,1
Природный газ 46,1
Бензин 43,6
Нефть 41
Мазут 39,2
Спирт 27
Древесный уголь 31
Каменный уголь 29,3
Метанол 22,7
Сухие дрова 15
Торф 8,1
Порох 3,8

Реальное количество тепла, выделяемого в результате горения, может отличаться от табличных данных в зависимости от следующих факторов:

  • влажность — наличие влаги в топливе понижает теплоту его сгорания, так как повышаются затраты энергии на испарение излишней воды;
  • зольность — содержание в топливе минеральных примесей уменьшает процентное содержание горючих веществ в навеске;
  • сернистость — при сжигании горючего материала, содержащего примеси соединений серы, образуется сернистый газ, который уменьшает концентрацию кислорода, необходимого для поддержания процесса сжигания.

Маркировка продукции

Выделяют 3 основные марки древесного угля:
1. A: создается из мягких лесоматериалов.
2. Б: изготавливается посредством смешивания твердой и мягкой древесины.
3. В: их получают методами углежжения и мягкого обжига.
Особенности изготовления каждой марки указаны в ГОСТ 7657-84.

Свойства угля в зависимости от марки

Где можно найти значения q

Информацию о величинах удельной теплоты сгорания для конкретных видов топлива можно найти в технических справочниках или в их электронных версиях на интернет-ресурсах. Обычно они приводятся в виде такой таблицы:

Удельная теплота сгорания, q

Вещество МДж/кг Вещество МДж/кг
Торф 8,1 Дизельное топливо 42,7
Дрова 10,2 Керосин 44,0
Уголь бурый 15,0 Бензин 48,0
Уголь каменный 29,3 Пропан 47,5
Нефть 41,3 Метан 50,11

Ресурсы разведанных, современных видов топлива ограничены. Поэтому в будущем на смену им придут другие источники энергии:

  • атомные, использующие энергию ядерных реакций;
  • солнечные, преобразовывающие энергию солнечных лучей в тепло и электричество;
  • ветряные;
  • геотермальные, использующие тепло природных горячих источников.

Физика 7,8,9,10,11 класс, ЕГЭ, ГИА

Основная информация по курсу физики для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА Физика 7,8,9,10,11 класс, ЕГЭ, ГИА

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.
Удельная теплота сгорания некоторых горючих материалов

Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1

Источники:

  1. Абрютин А. А. и др. Тепловой расчет котлов. Нормативный метод.
  2. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  3. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  4. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  5. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  6. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2021 — 970 с.

Технология процесса производства

В древности люди для изготовления угольного топлива использовали технологию углежжения. Они располагали дрова в специальных ямах и засыпали их землей, оставляя отверстия небольшого размера. После индустриальной революции процедура углежжения древесного угля стала проводиться при помощи автоматизированного оборудования, способного контролировать реакции карбонизации веществ и нагревания материала до температуры горения.

В промышленных условиях данный материал производится в небольшом количестве. Перед тем, как производить древесный уголь, нужно правильно выбрать сырье, приобрести специализированное оборудование и определить технологию изготовления. В промышленности используют 3 основных метода производства древесного угля:

  • сушка;
  • пиролиз;
  • прокалка.

Полученная продукция фасуется в мешки, брикетируется и маркируется. В ГОСТ 7657-84 описано, как делают древесный уголь на производстве. В нем приведено описание схем технологического процесса и указана точная информация о количестве температуры, требуемой для нагревания сырья.

Технологическая линия производства угля
Древесный уголь можно производить в домашних условиях, образуя кустарное производство. Чаще всего в качестве места для изготовления этого сырья выбирается приусадебный участок. Перед тем, как делать древесный уголь, нужно обустроить помещение в соответствии с правилами безопасности, выбрать технологию изготовления и оценить перспективы развития бизнес-проекта.

Выбор сырья

Согласно ГОСТ 24260-80 “Сырье для пиролиза и углежжения”, при создании древесного угля требуется древесина твердолиственных деревьев. К этой группе относятся береза, ясень, бук, клен, вяз и дуб. Также при изготовлении применяют хвойные породы деревьев: ель, сосна пихта, лиственница и кедр. В наименьшей степени применяются мягколиственная древесина: груша, яблоня, слива и тополь.

ГОСТ 24260-80 Сырье древесное для пиролиза и углежжения. Технические условия

1 файл 457.67 KB
Сырье обязано обладать следующими размерами: толщина – до 18 см, длина – до 125 см. На древесине не должно присутствовать большое количество заболонной гнили (до 3% от общей площади заготовок). Ее наличие снижает твердость материала и повышает его зольность. Не допускается наличие большого количества воды. Это вещество приводит к появлению трещин на поверхности заготовок.

Сушка древесины

В процессе сушки сырье располагают в углевыжигательном блоке. На древесину оказывает воздействие дымовой газ. В результате термообработки температура заготовок повышается до 160 °С. Количество воды, содержащейся в древесине, оказывает влияние на длительность технологического процесса. В результате сушки получается материал с уровнем влажности 4-5%.

Сушка древесины

Пиролиз

Пиролиз – химическая реакция разложения, заключающаяся в нагреве вещества при недостатке кислорода.В время горения происходит сухая перегонка древесины. Заготовки нагреваются до 300 °С. При пиролизе из сырья удаляется H2O, что приводит к обугливанию материала. При дальнейшей термообработке древесина превращается в топливо, процентное содержание углерода составляет 75%.

Прокалка

После завершения пиролиза продукт подвергается прокалке. Эта процедура необходима для отделения смол и ненужных газов. Прокалка происходит при температуре 550 °С. После этого вещество охлаждается до 80 °С. Охлаждение необходимо для предотвращения самовозгорания продукта при контакте с кислородом.

Теория теплоёмкости

Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

  • Закон Дюлонга — Пти и закон Джоуля — Коппа. Оба закона выведены из классических представлений и с определенной точностью справедливы лишь для нормальных температур (примерно от 15 °C до 100 °C).
  • Квантовая теория теплоёмкостей Эйнштейна. Первое применение квантовых законов к описанию теплоёмкости.
  • Квантовая теория теплоёмкостей Дебая. Содержит наиболее полное описание и хорошо согласуется с экспериментом.

Существующие теории теплоёмкости не охватывают всех особенностей поведения теплоёмкости различных твёрдых тел. В первую очередь это относится к аномальным пикам на кривых теплоёмкости, а также росту в высокотемпературной области удельной теплоёмкости над уровнем 3R нормальной (колебательной) составляющей. Возникновение некоторых из перечисленных аномалий детально исследовано и имеет своё физическое объяснение. Это в первую очередь относится к лямбда-пикам, связанным с ферромагнитными и ориентационными переходами, а также с переходами от упорядоченных к неупорядоченным структурам. Аномальные отклонения над уровнем 3R кривой теплоёмкости графита и алмаза в высокотемпературной области (Т > 3000 K) обусловлены процессами термодеструкции с переходом в плавление. Аномальные пики на кривых теплоёмкости германия и гафния объясняются процессами в кристаллической решетке, контролируемыми больцмановским фактором exp(-E/RT).

Два вида химических реакций и энергия

Благодаря химическим реакциям в природе появилось множество различных веществ.

Примечание: Химики сложные вещества, состоящие из атомов различных хим. элементов, называют химическими соединениями.

Химические реакции – это процессы перегруппировки атомов:

  • имеющиеся молекулы разъединяются на отдельные атомы;
  • из этих атомов образуются новые молекулы.

При этом происходит поглощение, или выделение энергии.

Повышая температуру, мы ускоряем химические реакции

Скорость молекул зависит от температуры. Чем быстрее молекулы двигаются, тем чаще они будут сталкиваться. А когда количество столкновений увеличивается, то химические реакции протекают быстрее. Поэтому температура вещества влияет на химические реакции.

Рис. 1. Все химические реакции можно разделить на поглощающие тепловую энергию – эндотермические и, выделяющие энергию — экзотермические

Во время протекания одних химических реакций тепловая энергия поглощается. Такие реакции называются эндотермическими (рис. 1).

Примерами эндотермических процессов могут служить процесс плавления или процесс парообразования.

А во время протекания других реакций, энергия, наоборот – выделяется. Такие химические реакции называют экзотермическими.

Среди экзотермических процессов можно отметить, например, конденсацию или кристаллизацию.

Примечание: Слова «эндотермический» и «экзотермический» пришли к нам из древнегреческого языка. По-гречески «Эндо» – внутри, «Экзо» – наружу, а «Термо» – тепло.

Эффективность нагревателей

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

В этом видео вы узнаете, как рассчитать количество теплоты:

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Производство древесного угля как бизнес

Рекомендуется продавать уголь оптом. Покупателями могут являться супермаркеты, заправочные станции, кафе и рестораны, фабрики и иные промышленные организации. Для изготовления и экспорта продукции необходимо зарегистрировать предприятие в налоговых инстанциях, наладить поставку сырья, арендовать помещение и приобрести профессиональное оборудование. Стоимость открытия бизнеса составляет в среднем 2 000 000 руб. Оптовая цена 1 кг древесного угля равняется 100 руб. Мешок по 3 кг стоит не менее 270 руб. При продаже 20 т угля суммарная прибыль составляет 800 000 руб. Бизнес окупается в течение 6 месяцев.

Недостатки использования горения

На нашей планете из-за широкого использования горения возникают негативные последствия:

  • истощаются полезные ископаемые – нефть, уголь, горючие сланцы, газ,
  • загрязняется окружающая среда — большинство продуктов горения токсичны,
  • ухудшается экология,
  • проявляется глобальное потепление.

Из-за глобального потепления температура на планете поднялась на несколько градусов, начали таять многовековые льды на северном и южном полюсах, изменяется климат.

Химический возраст твердого топлива

Существует три стадии его образования: буроугольная, торфяная, каменноугольная.

Древесина в основном используется я небольших котельных установках. Так как удельная теплота сгорания дров в джоулях имеет высокое значение, отходы деревообделочного производства (опилки, стружки, щепа, горбыли, кора) нашли применение в современных котельных установках.

Удельная теплота сгорания сухих сосновых дров существенно превышает величину, характерную для влажного дерева.

Полусухими считают дрова, которые заготовлены весной. Сухими являются те, что пролежали в лесу после рубки, их влажность не превышает 30 %.

Удельная теплота сгорания сухих дров зависит от породы. Отметим, что данный показатель одинаков для всех древесных отходов: опилок, щепы.

У дров, имеющих пониженный показатель, есть определенные преимущества: незначительная зольность, легкая воспламеняемость.

Именно поэтому их можно сжигать в несложных топочных устройствах, которые эффективно функционируют.

При правильной просушке удельная теплота сгорания дров равна 20.000 кДж/кг, что соответствует 5,5 кВт*часов/кг.

Применение

Чаще всего древесный уголь используется в качестве органического топлива. При сгорании он выделяет большое количество теплоты, требуемой для приготовления мясных изделий в мангале для барбекю. Топливо для мангала образует стабильное пламя и не выделяет вредные газы в атмосферу во время горения. Также это полезное ископаемое применяется в быту для розжига домашних каминов. Этот материал не выделяет запахов и не загрязняет помещение.

Некоторые жители городов не знают, зачем нужен древесный уголь, если присутствуют альтернативные источники тепла. Преимуществом данного материала является его экологичность. Он не оказывает негативное воздействие на экологию или организм человека.

Существуют следующие сферы применения древесного угля в промышленных масштабах:

  1. Черная и цветная металлургия: уголь используется в качестве восстановителя что обусловлено большим содержанием углерода. Этот материал является одним из самых главных компонентов шихты, использующихся при выплавке чугуна и иных сплавов железа.
  2. Производство алюминия, чистого кремния для полупроводниковых устройств, стекол, хрустальных изделий, красок, пластмассовых полимеров и электродов.
  3. Сельское хозяйство: производство натуральных удобрений для культурных растений и кормовых смесей для рогатого скота и птиц.
  4. Приборостроение и полиграфическое производство: изготовление антикоррозийных порошков и смазок. В этих сферах применяется сырье из мягкой древесины. Смазочные материалы из этого вещества изготавливается при помощи смешивания угля с остаточной золой. Полученная смесь обрабатывается раствором из марганцевого калия и серной кислотой.
  5. Производство дымного пороха: используется продукт из древесины ольхи. Он легко воспламеняется, благодаря высокому содержанию углерода. Процентное содержание угля в дымном порохе составляет от 12% до 20%.
  6. Изготовление электроугольных изделий: во время технологического процесса полезное ископаемое смешивается с каменноугольной смолой. Данные детали применяются в двигателях, электрокарах и электровакуумном оборудовании.
  7. Фармацевтика и пищевая промышленность: производство активированного угля, предназначенного для удаления растворенных органических веществ. Он используется в качестве адсорбента на очистных станциях для фильтрации природных вод.

Применение древесного угля ограничено сроком годности материала. Он может храниться в течение 5 – 12 лет. Срок годности продукта зависит от условий хранения. Рекомендуется содержать материал в закрытых емкостях, под навесом. Хранить продукт необходимо при температуре 200 °С.

Плавление аморфных веществ .

Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Брикеты

Брикетами называется твердое топливо, во многом сходное с пеллетами. Для их изготовления используются идентичные материалы: щепа, стружка, торф, шелуха и солома. Во время производственного процесса сырье измельчается и за счет сжатия формируется в брикеты. Этот материал также относится к экологически чистому топливу. Его удобно хранить даже на открытом воздухе. Плавное, равномерное и медленное горение этого топлива можно наблюдать как в каминах и печах, так и в отопительных котлах.

Рассмотренные выше разновидности экологичного твердого топлива являются хорошей альтернативой получения тепла. В сравнении с ископаемыми источниками тепловой энергии, неблаготворно воздействующими при горении на окружающую среду и являющимися, кроме того, не возобновляемыми, альтернативное топливо имеет явные преимущества и относительно невысокую стоимость, что немаловажно для потребителей некоторых категорий.

В то же время пожароопасность таких видов топлива значительно выше. Поэтому требуется предпринять некоторые меры безопасности относительно их хранения и использования огнестойких материалов для стен.

Пеллеты

Пеллетами (топливными гранулами) называется твердое топливо, созданное промышленным путем из древесных и растительных отходов: стружки, коры, картона, соломы.

Измельченное до состояния трухи сырье высушивается и засыпается в гранулятор, откуда уже выходит в виде гранул определенной формы. Для добавления массе вязкости применяют растительный полимер – лигнин. Сложность производственного процесса и высокий спрос формируют стоимость пеллетов. Материал используется в специально обустроенных котлах.

Разновидности топлива определяются в зависимости от того, из какого материала они переработаны:

  • кругляка деревьев любых пород;
  • соломы;
  • торфа;
  • подсолнечной шелухи.

Среди преимуществ, которыми обладают топливные гранулы, стоит отметить следующие качества:

  • экологичность;
  • неспособность к деформации и устойчивость к грибку;
  • удобство хранения даже под открытым небом;
  • равномерность и длительность горения;
  • относительно невысокая стоимость;
  • возможность использования для различных отопительных устройств;
  • подходящий размер гранул для автоматической загрузки в специально обустроенный котел.
Вид топлива Тепловая способность, ккал/кг
Пеллеты 4500
Дрова 2500
Уголь древесный 7500
Каменный уголь 7400
Мазут 9800
ДТ 10200
Природный газ 8300
Понравилась статья? Поделиться с друзьями:
Adblock
detector