Коэффициент теплопроводности строительных материалов

Содержание
  1. Что такое теплопроводность
  2. Коэффициент теплопроводности
  3. Советы и рекомендации по выбору материалов
  4. Таблица теплопроводности материалов
  5. Таблица теплопроводности теплоизоляционных материалов
  6. Коэффициент теплопроводности для металлов и неметаллических твердых материалов
  7. Таблица теплопроводности дерева
  8. От чего зависит теплопроводность?
  9. Если объяснять на пальцах
  10. Расчет теплопотерь дома
  11. Теплопотери через вентиляцию
  12. Значения теплопроводности для различных материалов
  13. Влияние влаги на теплопроводность стройматериала
  14. Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация
  15. Классификация теплоизоляции
  16. Стройматериалы с минимальным КТП
  17. Теплопроводность готового здания. Варианты утепления конструкций
  18. Теплопроводность строительных материалов, их плотность и теплоемкость
  19. Топливо
  20. Последовательность действий
  21. Необходимость расчетов
  22. Оценка эффективности термоизоляции
  23. Применение показателя теплопроводности на практике
  24. Как определить теплопотери
  25. Как рассчитать толщину стен
  26. Расчет толщины стены, толщины утеплителя, отделочных слоев
  27. Калькулятор расчёта толщины стены по теплопроводности

Что такое теплопроводность


Теплопроводность кирпичной стены: без утеплителя; с утеплителем снаружи; с утеплителем внутри дома;

Если говорить простыми словами, то теплопроводность – это передача тепла от более горячего тела к менее горячему. Если не углубляться в подробности, то все физические материалы и вещества могут передавать тепловую энергию.

Ежедневно, даже на самом примитивном бытовом уровне мы сталкиваемся с теплопроводностью, которая проявляется у каждого материала по-разному и в очень отличающейся степени. Для примера, если мешать кипящую воду металлической ложкой – можно очень скоро получить ожег, так как ложка нагреется почти моментально. Если же использовать деревянную лопатку, то нагреваться она будет очень медленно. Этот пример наглядно показывает разницу теплопроводности у металла и дерева – у металла она в разы выше.

Коэффициент теплопроводности

Для оценки теплопроводности любого материала используется коэффициент теплопроводности (λ), который измеряется в Вт/(м×℃) или Вт/(м×К). Этот коэффициент обозначает количество тепла, которое может провести любой материал, не зависимо от своего размера, за единицу времени на определённое расстояние. Если мы видим, что какой-то материал имеет большое значение коэффициента, то он очень хорошо проводит тепло и его можно использовать в роли обогревателей, радиаторов, конвекторов. К примеру, металлические радиаторы отопления в помещениях работают очень эффективно, отлично передавая нагрев от теплоносителя внутренним воздушным массам в помещении.

Если же говорить о материалах, используемых при строительстве стен, перегородок, крыши, то высокая теплопроводность – явление нежелательное. При высоком коэффициенте здание теряет слишком много тепла, для сохранения которого внутри помещения нужно будет сооружать довольно толстые конструкции. А это влечет за собой дополнительные финансовые затраты.

Коэффициент теплопроводности зависит от температуры. По этой причине в справочной литературе указывается несколько значений коэффициента, которые изменяются при увеличении температур. На проводимость тепла влияют и условия эксплуатации. В первую очередь речь идет о влажности, так как при увеличении процента влаги коэффициент теплопроводности также возрастает. Поэтому проводя такого рода расчеты нужно знать реальные климатические условия, в которых здание будет построено.

Советы и рекомендации по выбору материалов

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
  3. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.
  4. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
  5. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Таблица теплопроводности материалов

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум 0
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Коэффициент теплопроводности строительных материалов: что это такое + таблица значений
Проводимость тепла дерева
Прочность разных пород древесины

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Если объяснять на пальцах

Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:

  • стене толщиной 0,9 м из керамзитобетона;
  • брусу, диаметром 0,53 м;
  • стене, толщиной 0,44 м из газобетона.

Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.

Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.

Теплопроводность — это процесс переноса энергии от теплой части материала к холодной частицами этого материала (т.е. молекулами).

Основные значения коэффициентов теплопроводности из СНиП II-3-79* (приложение 2) и из СП 50.13330.2012 СНиП 23-02-2003.

Теплопроводность некоторых (но не всех) строительных материалов может значительно меняться в зависимости от их влажности. Первое значение в таблице — это значение для сухого состояния. Второе и третье значения — это значения теплопроводности для условий эксплуатации А и Б согласно приложению С СП 50.13330.2012. Условия эксплуатации зависят от климата региона и влажности в помещении. Проще говоря А — это обычная «средняя» эксплуатация, а Б — это влажные условия.

Материал Коэффициент теплопроводности, Вт/(м·°C)
В сухом состоянии Условия А («обычные») Условия Б («влажные»)
Пенополистирол (ППС) 0,036 — 0,041 0,038 — 0,044 0,044 — 0,050
Пенополистирол экструдированный (ЭППС, XPS) 0,029 0,030 0,031
Войлок шерстяной 0,045
Цементно-песчаный раствор (ЦПР) 0,58 0,76 0,93
Известково-песчаный раствор 0,47 0,7 0,81
Гипсовая штукатурка обычная 0,25
Минеральная вата каменная, 180 кг/м3 0,038 0,045 0,048
Минеральная вата каменная, 140-175 кг/м3 0,037 0,043 0,046
Минеральная вата каменная, 80-125 кг/м3 0,036 0,042 0,045
Минеральная вата каменная, 40-60 кг/м3 0,035 0,041 0,044
Минеральная вата каменная, 25-50 кг/м3 0,036 0,042 0,045
Минеральная вата стеклянная, 85 кг/м3 0,044 0,046 0,05
Минеральная вата стеклянная, 75 кг/м3 0,04 0,042 0,047
Минеральная вата стеклянная, 60 кг/м3 0,038 0,04 0,045
Минеральная вата стеклянная, 45 кг/м3 0,039 0,041 0,045
Минеральная вата стеклянная, 35 кг/м3 0,039 0,041 0,046
Минеральная вата стеклянная, 30 кг/м3 0,04 0,042 0,046
Минеральная вата стеклянная, 20 кг/м3 0,04 0,043 0,048
Минеральная вата стеклянная, 17 кг/м3 0,044 0,047 0,053
Минеральная вата стеклянная, 15 кг/м3 0,046 0,049 0,055
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 0,29 0,38 0,43
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 0,21 0,33 0,37
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 0,14 0,22 0,26
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 0,11 0,14 0,15
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 0,31 0,48 0,55
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 0,23 0,39 0,45
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 0,15 0,28 0,34
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 0,13 0,22 0,28
Сосна, ель поперек волокон 0,09 0,14 0,18
Сосна, ель вдоль волокон 0,18 0,29 0,35
Дуб поперек волокон 0,10 0,18 0,23
Дуб вдоль волокон 0,23 0,35 0,41
Медь 382 — 390
Алюминий 202 — 236
Латунь 97 — 111
Железо 92
Олово 67
Сталь 47
Стекло оконное 0,76
Свежий снег 0,10 — 0,15
Вода жидкая 0,56
Воздух (+27 °C, 1 атм) 0,026
Вакуум 0
Аргон 0,0177
Ксенон 0,0057
Арболит 0,07 — 0,17
Пробковое дерево 0,035
Железобетон плотностью 2500 кг/м3 1,69 1,92 2,04
Бетон (на гравии или щебне) плотностью 2400 кг/м3 1,51 1,74 1,86
Керамзитобетон плотностью 1800 кг/м3 0,66 0,80 0,92
Керамзитобетон плотностью 1600 кг/м3 0,58 0,67 0,79
Керамзитобетон плотностью 1400 кг/м3 0,47 0,56 0,65
Керамзитобетон плотностью 1200 кг/м3 0,36 0,44 0,52
Керамзитобетон плотностью 1000 кг/м3 0,27 0,33 0,41
Керамзитобетон плотностью 800 кг/м3 0,21 0,24 0,31
Керамзитобетон плотностью 600 кг/м3 0,16 0,2 0,26
Керамзитобетон плотностью 500 кг/м3 0,14 0,17 0,23
Крупноформатный керамический блок (тёплая керамика) 0,14 — 0,18
Кирпич керамический полнотелый, кладка на ЦПР 0,56 0,7 0,81
Кирпич силикатный, кладка на ЦПР 0,70 0,76 0,87
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР 0,47 0,58 0,64
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР 0,41 0,52 0,58
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР 0,35 0,47 0,52
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР 0,64 0,7 0,81
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР 0,52 0,64 0,76
Гранит 3,49 3,49 3,49
Мрамор 2,91 2,91 2,91
Известняк, 2000 кг/м3 0,93 1,16 1,28
Известняк, 1800 кг/м3 0,7 0,93 1,05
Известняк, 1600 кг/м3 0,58 0,73 0,81
Известняк, 1400 кг/м3 0,49 0,56 0,58
Туф, 2000 кг/м3 0,76 0,93 1,05
Туф, 1800 кг/м3 0,56 0,7 0,81
Туф, 1600 кг/м3 0,41 0,52 0,64
Туф, 1400 кг/м3 0,33 0,43 0,52
Туф, 1200 кг/м3 0,27 0,35 0,41
Туф, 1000 кг/м3 0,21 0,24 0,29
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 0,35
Фанера клееная 0,12 0,15 0,18
ДСП, ДВП, 1000 кг/м3 0,15 0,23 0,29
ДСП, ДВП, 800 кг/м3 0,13 0,19 0,23
ДСП, ДВП, 600 кг/м3 0,11 0,13 0,16
ДСП, ДВП, 400 кг/м3 0,08 0,11 0,13
ДСП, ДВП, 200 кг/м3 0,06 0,07 0,08
Пакля 0,05 0,06 0,07
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 0,15 0,34 0,36
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 0,15 0,19 0,21
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 0,38 0,38 0,38
Линолеум из ПВХ на теплоизолирующей подоснове, 1600 кг/м3 0,33 0,33 0,33
Линолеум из ПВХ на тканевой подоснове, 1800 кг/м3 0,35 0,35 0,35
Линолеум из ПВХ на тканевой подоснове, 1600 кг/м3 0,29 0,29 0,29
Линолеум из ПВХ на тканевой подоснове, 1400 кг/м3 0,2 0,23 0,23
Эковата 0,037 — 0,042
Перлит вспученный, песок, плотность 75 кг/м3 0,043 — 0,047
Перлит вспученный, песок, плотность 100 кг/м3 0,052
Перлит вспученный, песок, плотность 150 кг/м3 0,052 — 0,058
Перлит вспученный, песок, плотность 200 кг/м3 0,07
Пеностекло, насыпное, плотность 100 — 150 кг/м3 0,043 — 0,06
Пеностекло, насыпное, плотность 151 — 200 кг/м3 0,06 — 0,063
Пеностекло, насыпное, плотность 201 — 250 кг/м3 0,066 — 0,073
Пеностекло, насыпное, плотность 251 — 400 кг/м3 0,085 — 0,1
Пеностекло, блоки, плотность 100 — 120 кг/м3 0,043 — 0,045
Пеностекло, блоки, плотность 121 — 170 кг/м3 0,05 — 0,062
Пеностекло, блоки, плотность 171 — 220 кг/м3 0,057 — 0,063
Пеностекло, блоки, плотность 221 — 270 кг/м3 0,073
Керамзит, гравий, плотность 250 кг/м3 0,099 — 0,1 0,11 0,12
Керамзит, гравий, плотность 300 кг/м3 0,108 0,12 0,13
Керамзит, гравий, плотность 350 кг/м3 0,115 — 0,12 0,125 0,14
Керамзит, гравий, плотность 400 кг/м3 0,12 0,13 0,145
Керамзит, гравий, плотность 450 кг/м3 0,13 0,14 0,155
Керамзит, гравий, плотность 500 кг/м3 0,14 0,15 0,165
Керамзит, гравий, плотность 600 кг/м3 0,14 0,17 0,19
Керамзит, гравий, плотность 800 кг/м3 0,18
Гипсоплиты, плотность 1350 кг/м3 0,35 0,50 0,56
Гипсоплиты, плотность 1100 кг/м3 0,23 0,35 0,41
Перлитобетон, плотность 1200 кг/м3 0,29 0,44 0,5
Перлитобетон, плотность 1000 кг/м3 0,22 0,33 0,38
Перлитобетон, плотность 800 кг/м3 0,16 0,27 0,33
Перлитобетон, плотность 600 кг/м3 0,12 0,19 0,23
Пенополиуретан (ППУ), плотность 80 кг/м3 0,041 0,042 0,05
Пенополиуретан (ППУ), плотность 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ), плотность 40 кг/м3 0,029 0,031 0,04
Пенополиэтилен сшитый 0,031 — 0,038

Если в таблице у материала нет значений для условий А и Б, значит в СП 50.13330.2012 или на сайтах производителей нет соответствующих значений либо для этого материала это не имеет смысла.
Обратите внимание на рост теплопроводности в зависимости от условий влажности.

Расчет теплопотерь дома

Дом теряет тепло через ограждающие конструкции (стены, окна, крыша, фундамент), вентиляцию и канализацию. Основные потери тепла идут через ограждающие конструкции — 60-90% от всех теплопотерь.

Расчет теплопотерь дома нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме. Также можно благодаря расчётам провести анализ финансовой эффективности утепления, т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя.

Теплопотери через ограждающие конструкции

1) Вычисляем сопротивление теплопередаче стены, деля толщину материала на его коэффициент теплопроводности. Например, если стена построена из тёплой керамики толщиной 0,5 м с коэффициентом теплопроводности 0,16 Вт/(м×°C), то делим 0,5 на 0,16:
0,5 м / 0,16 Вт/(м×°C) = 3,125 м2×°C/Вт
2) Вычисляем общую площадь внешних стен. Приведу упрощённый пример квадратного дома:
(10 м ширина × 7 м высота × 4 стороны) — (16 окон × 2,5 м2) = 280 м2 — 40 м2 = 240 м2
3) Делим единицу на сопротивление теплопередаче, тем самым получая теплопотери с одного квадратного метра стены на один градус разницы температуры.
1 / 3,125 м2×°C/Вт = 0,32 Вт / м2×°C
4) Cчитаем теплопотери стен. Умножаем теплопотери с одного квадратного метра стены на площадь стен и на разницу температур внутри дома и снаружи. Например, если внутри +25°C, а снаружи -15°C, то разница 40°C.
0,32 Вт / м2×°C × 240 м2 × 40 °C = 3072 Вт

Вот это число и является теплопотерей стен. Измеряется теплопотеря в ваттах, т.е. это мощность теплопотери.

5) В киловатт-часах удобнее понимать смысл теплопотерь. За 1 час через наши стены при разнице температур в 40°C уходит тепловой энергии:
3072 Вт × 1 ч = 3,072 кВт×ч

За 24 часа уходит энергии:

3072 Вт × 24 ч = 73,728 кВт×ч

Понятное дело, что за время отопительного периода погода разная, т.е. разница температур всё время меняется. Поэтому, чтобы вычислить теплопотери за весь отопительный период, нужно в пункте 4 умножать на среднюю разницу температур за все дни отопительного периода.

Например, за 7 месяцев отопительного периода средняя разница температур в помещении и на улице была 28 градусов, значит теплопотери через стены за эти 7 месяцев в киловатт-часах:

0,32 Вт / м2×°C × 240 м2 × 28 °C × 7 мес × 30 дней × 24 ч = 10838016 Вт×ч = 10838 кВт×ч

Число вполне «осязаемое». Например, если бы отопление было электрическое, то можно посчитать сколько бы ушло денег на отопление, умножив полученное число на стоимость кВт×ч. Можно посчитать сколько ушло денег на отопление газом, вычислив стоимость кВт×ч энергии от газового котла. Для этого нужно знать стоимость газа, теплоту сгорания газа и КПД котла.

Кстати, в последнем вычислении вместо средней разницы температур, количества месяцев и дней (но не часов, часы оставляем), можно было использовать градусо-сутки отопительного периода — ГСОП. Можно найти уже посчитанные ГСОП для разных городов России и перемножать теплопотери с одного квадратного метра на площадь стен, на эти ГСОП и на 24 часа, получив теплопотери в кВт*ч.

Аналогично стенам нужно посчитать значения теплопотерь для окон, входной двери, крыши, фундамента. Потом всё просуммировать и получится значение теплопотерь через все ограждающие конструкции. Для окон, кстати, не нужно будет узнавать толщину и теплопроводность, обычно уже есть готовое посчитанное производителем сопротивление теплопередаче стеклопакета. Для пола (в случае плитного фундамента) разница температур не будет слишком большой, грунт под домом не такой холодный, как наружный воздух.

Теплопотери через вентиляцию

Примерный объем имеющегося воздуха в доме (объём внутренних стен и мебели не учитываю):

10 м х10 м х 7 м = 700 м3

Плотность воздуха при температуре +20°C 1,2047 кг/м3. Удельная теплоемкость воздуха 1,005 кДж/(кг×°C). Масса воздуха в доме:

700 м3 × 1,2047 кг/м3 = 843,29 кг

Допустим, весь воздух в доме меняется 5 раз в день (это примерное число). При средней разнице внутренней и наружной температур 28 °C за весь отопительный период на подогрев поступающего холодного воздуха будет в среднем в день тратится тепловой энергии:

5 × 28 °C × 843,29 кг × 1,005 кДж/(кг×°C) = 118650,903 кДж

118650,903 кДж = 32,96 кВт×ч (1 кВт×ч = 3600 кДж)

Т.е. во время отопительного периода при пятикратном замещении воздуха дом через вентиляцию будет терять в среднем в день 32,96 кВт×ч тепловой энергии. За 7 месяцев отопительного периода потери энергии будут:

7 × 30 × 32,96 кВт×ч = 6921,6 кВт×ч

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Материал

Теплопроводность [Вт / (м · К)]

Полиуретановая пена

0,025 — 0,045

Воздух

0,03

Минеральная вата

0,031 — 0,045

Пенополистирол

0,032 — 0,045

Войлок, маты и плиты из минеральной ваты

0,042 — 0,045

Дерево

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Кирпич

0,15 – 1,31

Портландцемент

0,29

Вода

0,6

Обычный бетон

1 — 1,7

Железобетон

1,7

Стекло

0,8

Армированное стекло

1,15

Полиэфирная смола

0,19

Гипсовая штукатурка

0,4 — 0,57

Мрамор

2,07 – 2,94

Нержавеющая сталь

17

Чугун

50

Влияние влаги на теплопроводность стройматериала

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация

В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из красного кирпича в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

Листы пенопласта
Листы пенопласта

Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.

Оштукатуривание пенопласта
Оштукатуривание пенопласта

Вы можете ознакомиться с уровнем теплопроводности утеплителя, таблично представленного на фото ниже.

Теплопроводность утеплителей
Теплопроводность утеплителей

Классификация теплоизоляции

По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

  • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
  • Утеплитель, умеющий отражать все виды воздействия на него;

По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

  • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
  • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
  • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

Примечание! Не все утеплители имеют стойкость к высоким температурам. Например, эковата, соломит, ДСП, ДВП и торф нуждаются в надёжной защите от внешних условий.

Стройматериалы с минимальным КТП

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

Значение теплопроводности может быть рассчитано по формуле:

λ = Q / S *(T1-T2)*t,

Где:

  • Q – количество тепла;
  • S – толщина материала;
  • T1, T2 – температура с двух сторон материала;
  • t – время.

Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

λ = 1,16 √ 0,0196+0,22d2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Теплопроводность строительных материалов, их плотность и теплоемкость

Приведена обширная таблица теплопроводности строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

Следует обратить внимание на величину теплопроводности строительных материалов в таблице, поскольку эта характеристика, наряду с их плотностью, является наиболее важной. Особенно теплопроводность важна для строительных материалов, применяемых в качестве теплоизоляции при утеплении строительных конструкций.

Теплопроводность строительных материалов существенно зависит от их пористости и плотности. Чем меньше плотность, тем ниже теплопроводность материала, поэтому низкая теплопроводность свойственна пористым и легким материалам (значения плотности строительных материалов, металлов и сплавов, продуктов и других веществ вы также сможете найти в подробной таблице плотности).

Например, в нашей таблице теплопроводности материалов и утеплителей можно выделить следующие строительные материалы с низким показателем коэффициента теплопроводности — это аэрогель (от 0,014 Вт/(м·град)), стекловата, пенополистирол пеноплэкс и вспененный каучук (от 0,03 Вт/(м·град)), теплоизоляция МБОР (от 0,038 Вт/(м·град)), газобетон и пенобетон (от 0,08 Вт/(м·град)).

Топливо

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Как определить теплопотери

Главные элементы здания, через которые уходит тепло:

  • двери (5-20%);
  • пол (10-20%);
  • крыша (15-25%);
  • стены (15-35%);
  • окна (5-15%).

Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

Значение проводимости тепла зависит от таких параметров:

  1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
  2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
  3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора
Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе
Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен
Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Понравилась статья? Поделиться с друзьями:
    Adblock
    detector